Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, A B = S A = a , A D = a 2 , S A vuông góc với đáy. Gọi M, N lần lượt là trung điểm của AD và SC, gọi I là giao điểm của BM và AC. Tỷ số V A M N I V S . A B C D là?
A. 1/24
B. 1/12
C. 1/6
D.1/7
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, A B = B C = a , A D = 2 a , S A vuông góc với mặt đáy A B C D , S A = a . Gọi M, N lần lượt là trung điểm của SB, CD. Tính cosin của góc giữa MN và (SAC).
A. 2 5
B. 55 10
C. 3 5 10
D. 1 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng
A. 224 21
B. 14 42
C. 2 14 21
D. 14 21
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = a , A D = 2 a . Cạnh bên SA vuông góc với mặt phẳng đáy và cạnh bên SC tạo với đáy một góc 60 ° . Gọi M, N là trung điểm các cạnh bên SA và SB. Khoảng cách từ điểm S đến mặt phẳng (DMN) bằng
A. 2 a 465 31
B. a 31 60
C. a 60 31
D. 2 a 5 31
Cho hình chóp S.BCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; A D = 3 B C = 3 a ; A B = a , S A = a 3 . Điểm I thỏa mãn A D ⇀ = 3 A I ⇀ ;M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB , . SC Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
A. V = πa 3 2 5
B. V = πa 3 5
C. V = πa 3 10 5
D. V = πa 3 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có A B = 2 a , A D = 4 a , S A ⊥ A B C D và cạnh SC tạo với đáy góc 60 ° . Gọi M là trung điểm của BC, N là điểm trên cạnh AD sao cho DN = a . Khoảng cách giữa MN và SB là
A. 2 a 285 19
B. a 285 19
C. 2 a 95 19
D. 8 a 19
Cho hình chóp S.ABCD có đáy là hình thang vuông tại B. AB=BC=a, AD=2a. Biết SA vuông góc với đáy (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm SB,CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC)
A. 5 5
B. 55 10
C. 3 5 10
D. 2 5 5
Cho hình chóp S.ABCD, đáy là hình thang vuông tại A và B, biết AB=BC=a,AD=2a,SA= a 3 v à S A ⊥ (ABCD). Gọi M và N lần lượt là trung điểm của SB,SA. Tính khoảng cách từ M đến (NCD) theo a
A. a 66 22
B. 2 a 66
C. a 66 11
D. a 66 44
Cho hình chóp S.ABCD, đáy là hình thang vuông tại A và B, biết A B = B C = a , A D = 2 a , S A = a 3 và S A ⊥ A B C D . Gọi M và N lần lượt là trung điểm của SB, SA. Tính khoảng cách từ M đến (NCD) theo a
A. a 66 11
B. a 66 22
C. a 66 44
D. 2 a 66