Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD (tham khảo hình vẽ bên). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.CMN
A. R = a 37 6
B. R = a 29 8
C. R = 5 a 3 12
D. R = a 93 12
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh 2a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của BC và CD. Khi đó bán kính mặt cầu ngoại tiếp khối SCMN là:
A . 3 a 2
B . a 3
C . 93 6 a
D . 31 12 a
Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2 6 a Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SD, CD, BC. Thể tích khối chóp S.ABPN là x, thể tích khối tứ diện CMNP là y. Giá trị của x,y thỏa mãn các bất đẳng thức nào dưới đây?
A . x 2 + 2 x y - y 2 > 160
B . x 2 - 2 x y + 2 y 2 < 109
C . x 2 + x y - y 4 < 145
D . x 2 - x y + y 4 > 125
Cho hình chóp S.ABCD đáy ABCD là hình chữ nhật cạnh AB = 2a, AD = a, ∆ S A D đều và nằm trong mặt phẳng vuông góc với đáy. Diện tích xung quanh của mặt cầu ngoại tiếp hình chóp S.ABCD là:
A. 16 π 3 a 2
B. 57 π 18 a 2
C. 48 π 9 a 2
D. 24 π 9 a 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB =a, BC = a 3 .Cạnh SA vuông góc với mặt phẳng đáy và S A = 2 a 3 Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = a
B. R = 3a
C. R = 4a
D. R = 2a
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh 3a,cạnh bên SC = 2a và SC vuông góc với mặt phẳng đáy. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = 2 a 3
B. R = 3 a
C. R = a 13 2
D. R = 2 a
Cho hình chóp S.ABCD có đáy ABCD là vuông cạnh 2a, mặt bên SAB là tam giác cân nằm trong mặt phẳng vuông góc với đáy, A S B = 120 O Tính bán kính mặt cầu (S) ngoại tiếp hình chóp.
A. 2 a 2
B. 21 a 3
C. a 2
D. Kết quả khác