Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy, biết S C = 3 Gọi M, N, P, Q lần lượt là trung điểm của SB, SD, CD, BC. Tính thể tích của khối chóp A.MNPQ
A . a 3 3
B . a 3 8
C . a 3 12
D . a 3 4
Cho hình chóp S.ABCD đáy ABCD là hình thang cân, A D = a , A B = a , B C = a , C D = 2 a . Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và SD. Tính cosin góc giữa MN và (SAC) biết thể tích khối chóp S.ABCD bằng a 3 3 4
A. 310 20
B. 3 5 10
C. 3 310 20
D. 5 10
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB = BC = CD = a, AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và CD. Tính cosin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4
A . 5 10
B . 3 310 20
C . 310 20
D . 3 5 10
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 45 ° . Gọi V 1 , V 2 lần lượt là thể tích khối chóp S.AHK và S.ACD với H, K lần lượt là trung điểm cùa SC và SD. Tính độ dài đường cao của khối chóp S.ABCD và tỉ số k= V 1 / V 2
A. h= a, k= 1/4
B. h= a, k= 1/6
C. h= 2a, k= 1/8
D. h= 2a, k= 1/3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi M và N lần lượt là trung điểm của BC và CD. Tính thể tích khối chóp S.CMN.
A. V = a 3 3 18
B. V = a 3 3 24
C. V = a 3 3 48
D. V = a 3 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AD=2AB=2CD=2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD bằng a 3 3 4 .
A. 5 10
B. 3 10 20
C. 10 20
D. 3 5 10
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a . SA vuông góc với đáy. Góc giữa cạnh bên SB và mặt đáy bằng 60 0 . Gọi M, N lần lượt là trung điểm của SC và SD . Tính thể tích của khối chóp S.AMN
A. V S . A M N = a 3 3 12
B. V S . A M N = a 3 3 24
C. V S . A M N = a 3 3 3
D. V S . A M N = a 3 3 6
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. SA vuông góc với mặt phẳng đáy (ABCD); AB=2a; AC=CD=a. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M và N. Tính thể tích khối chóp S.CDMN theo thể tích khối chóp S.ABCD
A. V S . C D M N = 14 27 V S . A B C D
B. V S . C D M N = 4 27 V S . A B C D
C. V S . C D M N = 10 27 V S . A B C D
D. V S . C D M N = 1 2 V S . A B C D
Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a 3 , SC tạo với mặt phẳng đáy (ABCD) một góc Thể tích khối chóp S.ABCD theo a là
A. 4 a 3 3 .
B. 3 a 3 10 .
C. 4 a 3 15 5 .
D. 2 a 3 15 3 .