Chọn B
Ta có:
Do tam giác SAB đều => SM vuông góc với AB
Mà (SAB) vuông góc với mặt phẳng đáy => SM chính là đường cao của khối chóp SABCD
Mà SM vuông góc với NC ( Do SM vuông góc với đáy ABCD)
=> NC vuông góc với (SMD)
=> SI vuông góc với NC
Chọn B
Ta có:
Do tam giác SAB đều => SM vuông góc với AB
Mà (SAB) vuông góc với mặt phẳng đáy => SM chính là đường cao của khối chóp SABCD
Mà SM vuông góc với NC ( Do SM vuông góc với đáy ABCD)
=> NC vuông góc với (SMD)
=> SI vuông góc với NC
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của AB, AD. Khoảng cách h từ điểm D tới mặt phẳng (SCN) là
A. h = 4 a 3 3
B. h = a 2 4
C. h = a 3 3
D. h = a 3 4
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng
A. 3 2 a 8
B. 30 a 10
C. 30 a 8
D. 3 7 a 14
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng:
A. 3 a 2 8
B. a 30 10
C. a 30 8
D. 3 a 7 14
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB = a; AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = 2 a 1315 89
C. d = 2 a 1513 89
D. d = a 1513 89
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của SC và AD. Góc giữa đường thẳng MN và mặt đáy (ABCD) bằng:
A. 90 °
B. 30 °
C. 45 °
D. 60 °
Cho hình chóp SABCD có đáy là hình thang vuông tại A;B với BC là đáy nhỏ. Biết rằng tam giác SAB đều có cạnh là 2a và nằm trong mặt phẳng vuông góc với đáy, S C = a 5 và khoảng cách từ D tới mặt phẳng (SHC) là 2 a 2 (H là trung điểm của AB). Thể tích khối chóp S.ABCDlà:
A. a 3 3 3
B. a 3 3
C. 4 a 3 3 3
D. 4 a 3 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật, A B = a , A D = 2 a . Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 ° .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M và N lần lượt là trung điểm của các cạnh AB, CD. Khoảng cách giữa hai đường thẳng CM và SN bằng
A. a 3 4
B. 3 a 2 2
C. a 3 2
D. 3 a 2
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, A B C = 60 ° , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, M, N lần lượt là trung điểm của các cạnh AB, SA, SD và P là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm của đoạn thẳng SP đến mặt phẳng (HMN) bằng
A. a 15 30 .
B. a 15 20 .
C. a 15 15 .
D. a 15 10 .