Chọn D.
Phương pháp:
+ Chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện CMNP (với O là tâm của hình vuông ABCD)
Chọn D.
Phương pháp:
+ Chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện CMNP (với O là tâm của hình vuông ABCD)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy. Mặt phẳng ( α ) qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP là
A. V = 32 π 3
B. 64 2 π 3
C. 108 π 3
D. 125 π 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh cạnh 2 2 bên SA vuông góc với mặt phẳng đáy và SA = 3 Mặt phẳng qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 125 π 6
B. V = 32 π 3
C. V = 108 π 3
D. V = 64 2 π 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh cạnh SA vuông góc với mặt phẳng đáy. Mặt phẳng qua A và vuông góc SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 2 24
B. V = π 2 12
C. V = 3 π 2
D. V = 4 π 3
Cho hình chóp S,ABCDcó đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A . Mặt phẳng (P)đi qua A và vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết S C = 8 a , A S C ^ = 60 ∘ . Tính thể tích khối cầu ngoại tiếp đa diện ABCD.MNP
A. V = 24 π a 3
B. V = 32 3 π a 3
C. V = 18 3 π a 3
D. V = 6 π a 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi B’, D’ lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính thể tích của khối chóp S.AB’C’D’.
A. a 3 3
B. 16 a 3 45
C. a 3 2
D. a 3 2 2
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên tạo với đáy một góc 60 o . Gọi M là trung điểm của SC. Mặt phẳng đi qua AM và song song với BD cắt SB tại E và cắt SD tại F. Tính thể tích V khối chóp S.AEMF.
A. V = a 3 6 36 .
B. V = a 3 6 9 .
C. V = a 3 6 6 .
D. V = a 3 6 18 .
Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với góc 60 ° . Gọi M là trung điểm của SC. Mặt phẳng qua AM và song song với BD, cắt SB, SD lần lượt tại E và F và chia khối chóp thành hai phần. Tính thể tích V của khối chóp không chứa đỉnh S.
A. V = a 3 6 36
B. V = a 3 6 9
C. V = a 3 6 18
D. V = a 3 6 12
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A ' trên cạnh SA sao cho S A ' = 1 3 S A . Mặt phẳng qua A ' và song song với đáy của hình chóp cắt các cạnh SB, SC, SD lần lượt tại B ' C ' D ' . Tính theo V thể tích khối chóp S.A’B’C’D’ ?
A. V 3
B. V 81
C. V 27
D. V 9
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA vuông góc với đáy S A = a 2 . Gọi B, D là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng cắt SC tại C'. Thể tích khối chóp S.AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3