Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 3HB. Góc giữa đường thẳng SC và mặt phẳng bằng 60°. Tính khoảng cách giữa hai đường thẳng SA và BC theo a.
A . a 61 4
B . 4 a 17 3
C . a 35 51
D . 4 a 351 3 61
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, AB = 2a, B D = A C 3 , mặt bên SAB là tam giác cân đỉnh A, hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy trùng với trung điểm H của AI. Khoảng cách giữa hai đường thẳng SB và CD bằng bao nhiêu?
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB = a 2 và SA=SB=SC=SD=2a. Gọi K là hình chiếu vuông góc của B trên AC, H là hình chiếu vuông góc của K trên SA. Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh A. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm I thuộc đoạn AB sao cho BI = 2AI. Góc giữa mặt bên (SCD) và mặt đáy (ABCD) bằng 60 0 . Tính khoảng cách giữa hai đường thẳng AD và SC.
A . 93 31 a
B . 3 93 31 a
C . 93 31
D . 3 93 31 a
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB =a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, SA=SB=SC=SD=4a
a) tính góc giữa đường thẳng SD và BC
b) tính diện tích hình chiếu vuông góc của tam giác SCD trên mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh AB= a 6 , cạnh SC=4 3 a Hai mặt phẳng (SAD) và (SAC) cùng vuông góc với mặt phẳng (ABCD) và M là trung điểm của SC. Tính góc giữa đường thẳng BM và mặt phẳng (ACD)
cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a\sqrt{2}\), SA=SB=SC=SD=2a
a) tính góc giữa đường thẳng SC và AB
b) tính diện tích hình chiếu vuông góc của tam giác SAB trên mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC.
A . a 10 10
B . a 10 5
C . 2 a 10 5
D . 2 a 5 5