Cho hình chóp S.ABC có S A ⊥ m p ( A B C ) , S A = 4 a 5 , AB = AC = a, BC= 6 a 5 . Gọi M là trung điểm của BC và α là góc giữa hai đường thẳng AC, SM. Tính cosα.
Hình chóp S.ABC có AB = AC = a, B A C ^ = 120 ° , SA ⊥ (ABC) và V S . A B C = a 3 8 . Gọi α là góc giữa (SBC) và (ABC). Tính cos α .
A. cos α = 1 3
B. cos α = 3 2
C. cos α = 2 2
D. cos α = 1 2
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC=b, AB=c, B A C ^ = α . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và (SAC). Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD, α là góc giữa đường thẳng MN và (SAC). Giá trị tan α là
A. 6 3
B. 6 2
C. 3 2
D. 2 3
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, A D = 3 a , B C = C D = 4 a ; cạnh bên SA vuông góc với đáy và S A = a 3 . Gọi M là điểm nằm trên cạnh AD sao cho A M = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cos α bằng
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc α là góc giữa đường thẳng BM và mặt phẳng (ABC).
A. cos α = 7 14
B. cos α = 2 7 7
C. cos α = 5 7
D. cos α = 2 7
Xét khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S.ABC nhỏ nhất.
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng đáy là điểm H thuộc cạnh BC sao cho B H → = - 2 C H → Biết thể tích khối chóp S.ABC bằng a 3 3 6 thì góc giữa SB và mặt phăng (ABC) bằng α. Giá trị tan α bằng bao nhiêu?
A. tan α = 2 3
B. tan α = 3
C. tan α = 3 2
D. tan α = 2