Xét khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S.ABC nhỏ nhất.
Hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA=SB=SC. Gọi α là góc giữa mặt (SAB) và (ABC). Tính cos α
A. cos α = 1 2
B. cos α = 1 3
D. cos α = 1 6
D. cos α = 2 3
Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân, AB = AC = a, BAC = 120 0 , BB' = a, I là trung điểm CC'. Gọi ( α ) là góc giữa hai mặt phẳng (ABC) và (AB'I). Tính cos α
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, SA=2a và SA ⊥ (ABCD), Gọi a là góc giữa 2 đường thẳng SC và BD. Khi đó, cos α bằng
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC=b, AB=c, B A C ^ = α . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Cho hình chóp S.ABC có S A ⊥ m p ( A B C ) ,
S A = 4 α 5 ,
A B = A C = α , B C = 6 α 5 . Gọi M là trung điểm của BC và α là góc giữa hai đường thẳng AC, SM. Tính cos α
Cho hình chóp S.ABC có đáy ABC vuông cân tại B với AB = a, SA = a 3 và S A ⊥ A B C . Gọi M là điểm trên cạnh AB và AM = x (0 < x < a), mặt phẳng α đi qua M và vuông góc với AB. Tìm x để diện tích thiết diện tạo bởi mặt phẳng α và hình chóp S.ABC lớn nhất
#SGD Bắc Giang – năm 2017 – 2018~Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB=a, BC = a 3 , SA=a và SA vuông góc với đáy ABCD. Tính sin α, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
Cho hình lăng trụ đều ABC.A’B’C’. Biết khoảng cách từ điểm C
đến mặt phẳng (ABC’) bằng a, góc giữa 2 mặt phẳng (ABC’) và
(BCC’B’) bằng a với cos α = 1 3 (tham khảo hình vẽ dưới đây). Thể
tích khối lăng trụ ABC.A’B’C’ bằng