Đáp án D
Phương pháp giải:
Xác định tâm mặt cầu ngoại tiếp đi qua các đỉnh của khối chóp bằng phương pháp dựng hình, từ đó dựa vào tính toán xác định bán kính – thể tích mặt cầu.
Lời giải:
Đáp án D
Phương pháp giải:
Xác định tâm mặt cầu ngoại tiếp đi qua các đỉnh của khối chóp bằng phương pháp dựng hình, từ đó dựa vào tính toán xác định bán kính – thể tích mặt cầu.
Lời giải:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Tính thể tích khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB là
A. π a 3 2
B. 2 π a 3 3
C. 2 π a 3
D. π a 3 6
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và B C = a . Cạnh bên SA vuông góc với đáy A B C . Gọi H, K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Tính thể tích khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB là
A. π a 3 2
B. 2 π a 3 3
C. 2 π a 3
D. π a 3 6
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC = a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Thể tích của khối cầu ngoại tiếp chóp A.HKCB bằng
A. 2 π a 3
B. π a 3 2
C. 2 π a 3 3
D. π a 3 6
Cho hình chóp S.ABC có đáy là tam giác vuông cận tại B , AB = a . Cạnh bên SA vuông góc với mặt phẳng (ABC) và SC hợp với đáy một góc bằng 60 0 . Gọi (S) là mặt cầu ngoại tiếp khối chóp S.ABC. Tính thể tích khối cầu (S).
A. 8 2 πa 3 3
B. 4 2 πa 3 3
C. 2 2 πa 3 3
D. 2 πa 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a. Cạnh bên SA vuông góc với đáy và SA=a. Gọi M, N lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích V của khối chóp S.AMN
A. V = a 3 36
B. V = a 3 5 15
C. V = a 3 3 18
D. V = a 3 30
Cho hình chóp S.ABC có S A = a , A B = a 3 , B A C ^ = 150 ° và SA vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là hình chiếu vuông góc của A trên SB và SC. Thể tích khối cầu ngoại tiếp hình chóp A.BCMN bằng
A. 4 7 π a 3 3
B. 44 11 π a 3 3
C. 28 7 π a 3 3
D. 20 5 π a 3 3
Cho hình chóp S.ABC có đáy là tam giác vuông cận tại B, A B = d . Cạnh bên SA vuông góc với mặt phẳng (ABC) và SC hợp với đáy một góc bằng 60 ° . Gọi (S) là mặt cầu ngoại tiếp khối chóp S.ABC. Tính thể tích khối cầu .
A. 4 2 πa 3 3
B. 2 2 πa 3 3
C. 8 2 πa 3 3
D. 2 πa 3 3
Cho hình chóp S.ABC có SA vuông góc với A B C , A B = a ; C A = a 2 ; B A C = 45 ° . Gọi B 1 ; C 1 lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích mặt cầu ngoại tiếp hình chóp A . B C C 1 B 1
A. V = π a 3 2 3
B. V = π a 3 2
C. V = 4 3 π a 3
D. V = π a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1 lần lượt là hình chiếu của A trên SB, SC. Tính bán kính mặt cầu đi qua năm điểm A, B, C, B 1 , C 1 .
A. a 3 2
B. a 3 3
C. a 3 4
D. a 3 6