Chọn D.
Gọi M là trung điểm của BC, suy ra AM ⊥ BC.
Ta có
Do đó
Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2
Tam giác vuông SAM, có
Chọn D.
Gọi M là trung điểm của BC, suy ra AM ⊥ BC.
Ta có
Do đó
Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2
Tam giác vuông SAM, có
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với đáy (ABCD). Gọi φ là góc giữa SD và mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?
A.cot φ = 5 15
B. cot φ = 15 5
C. φ = 30 o
D. cot φ = 3 2
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a cạnh bên SA vuông góc mặt đáy và SA = a . Gọi φ là góc tạo bởi SB và mặt phẳng (ABCD). Xác định cot φ .
A. cot φ = 2
B. cot φ = 1 2
C. cot φ = 2 2
D. cot φ = 2 4
Hình chóp S.ABC có đáy là tam giác vuông tại B có AB=a, AC=2a, SA vuông góc với mặt phẳng đáy, SA=2a. Gọi φ là góc tạo bởi hai mặt phẳng (SAC), (SBC). Tính cos φ bằng
A. 3 2 .
B. 1 2 .
C. 15 5 .
D. 3 5 .
Cho hình lăng trụ ABC.A’B’C’ đáy là tam giác đều tâm O, C’O vuông góc với (ABC). Khoảng cách từ O tới đường thẳng CC’ bằng a. Góc tạo bởi mặt phẳng (AA’C’C) và mp(BB’C’C) bằng 120 o . Gọi góc giữa cạnh bên và đáy của lẳng trụ là φ thì.
A. tan φ = 2 4
B. cos φ = 3 4
C. si n φ = 1 3
D. c o t φ = 2 2
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = a, AC = a 3 Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm H của BC, HA' = a 5 Gọi φ là góc giữa hai đường thẳng A'B và B'C.
Tính cos φ
A.cos φ = 7 3 48
B. cos φ = 3 2
C. cos φ = 1 2
D. cos φ = 7 3 24
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Tính thể tích V của khối chóp S.ABC.
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).
b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.
c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a, gọi φ là góc giữa hai mặt phẳng (SAB) và (CSD) Tính cos φ
A. cos φ = 1 2
B. cos φ = 1 6
C. cos φ = 1 3
D. cos φ = 1 4
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có góc B A D ^ = 60 o và S A = S B = S D = a 3 2
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.