Đáp án B.
Dựng tam giác đều IAB (I và C cùng phía bờ AB).
Ta có:
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Ta có:
Đáp án B.
Dựng tam giác đều IAB (I và C cùng phía bờ AB).
Ta có:
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a, cạnh bên SA vuông góc với đáy và S A = 2 a . Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.
Cho hình chóp S.ABC đáy ABC là tam giác vuông cân tại A có BC = 3 a , SA = 2 a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là:
Cho hình chóp S.ABC có đáy ABC là hình vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng (ABC). Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = 2a, cạnh bên SA vuông góc với đáy và SA = a 3 .Tính diện tích S m c của mặt cầu ngoại tiếp hình chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với mặt đáy và SA = AB = a. Tính bán kính mặt cầu ngoại tiếp khối chóp.
Cho hình chóp S. ABC có đáy ABC là tam giác cân tại A, biết AB = a; SA = SB = a và mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Tính SC biết bán kính mặt cầu ngoại tiếp hình chóp S.ABC bằng a.
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại B. Biết SA=2a, AB=a, BC=a 3 . Tính bán kính R của mặt cầu ngoại tiếp hình chóp.
A. a .
B. 2 2 a .
C. 2 a .
D. 3 a .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông, biết BA=BC=2a, cạnh bên SA=2a 2 vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp hình chóp theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng (ABC) và AB=2,AC=4,
SA= 5 . Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính là