\(B\in MB;B\in\left(ABCD\right)\)
=>\(B=MB\cap\left(ABCD\right)\)
=>Số giao điểm của MB với mp(ABCD) là 1 giao điểm
\(B\in MB;B\in\left(ABCD\right)\)
=>\(B=MB\cap\left(ABCD\right)\)
=>Số giao điểm của MB với mp(ABCD) là 1 giao điểm
cho hình bình hành ABCD và ABMN không đồng phẳng . Tìm số giao điểm của mặt phẳng (ABCD) với đường thẳng MB
cho hình bình hành ABCD và ABMN không đồng phẳng . Tìm số giao điểm của mặt phẳng (ABCD) với các đường thẳng sau
a) Vẽ hình
b) đường thẳng CD
c) đường thẳng BD
d) đường thẳng BN
e) đường thẳng AD
Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi M, N, P theo thứ tự là trung điểm của đoạn thẳng SA, BC, CD. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP). Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, hãy tìm giao điểm của đường thẳng SO với mặt phẳng (MNP).
Cho hình chóp (S.ABCD) có đáy (ABCD) là hình bình hành; M, N lần lượt là trung điểm của (SB, SD) a) Chứng minh đường thẳng BD song song với mặt phẳng (AMN) b) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). Tìm giao điểm của đường thẳng MN và mặt phẳng (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm SD a) tìm giao điểm của đường thẳng BM và mặt phẳng (SAC) b) tìm giao tuyến của mặt phẳng (MAC) và (SAD)
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt BC tại E. Gọi C’ là một điểm nằm trên cạnh SC.
a) Tìm giao điểm M của CD và mp(C’AE).
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C’AE).
Trong mặt phẳng (α) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên (α). Trên a, b và c lần lượt lấy ba điểm A’, B’ và C’ tùy ý.
a) Hãy xác định giao điểm D’ của đường thẳng d với mặt phẳng (A’B’C’).
b) Chứng minh A’B’C’D’ là hình bình hành.
Cho hình bình hành S.ABCD có đáy là ABCD là hình bình hành tâm O Gọi M N Q lần lượt trên SA SB SD Tìm giao điểm của đường thẳng SC và mặt phẳng mnq
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mặt phẳng (P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O; giao điểm của hai đường thẳng CM và SO là I; giao điểm của hai đường thẳng NI và SD là J. Tìm giao điểm của mp(CMN) với đường thẳng SO là:
A. A
B. J
C. I
D. B