a: Xét ΔEAB và ΔFCD có
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
\(\widehat{EBA}=\widehat{FDC}\)
Do đó: ΔEAB=ΔFCD
a: Xét ΔEAB và ΔFCD có
\(\widehat{EAB}=\widehat{FCD}\)
AB=CD
\(\widehat{EBA}=\widehat{FDC}\)
Do đó: ΔEAB=ΔFCD
Cho hình bình hành ABCD. Lấy E, F trên BD sao cho AE // CF
a) Chứng minh tam giác EAB = tam giác FCD
b) Gọi O là giao điểm của AC và BD. Chứng minh E đối xứng với F qua O
Cho hình bình hành ABCD. Lấy E, F trên BD sao cho AE // CF
a) Chứng minh tam giác EAB = tam giác FCD
b) Gọi O là giao điểm của AC và BD. Chứng minh E đối xứng với F qua O
Cho hình bình hành ABCD. Lấy E, F trên BD sao cho AE // CF
a) Chứng minh tam giác EAB = tam giác FCD
b) Gọi O là giao điểm của AC và BD. Chứng minh E đối xứng với F qua O
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Trên AB lấy điểm E, trên CD lấy điểm F sao cho AE = CF.
a) Chứng minh: tam giác AEO = tam giác CFO
b) Chứng minh: E và F đối xứng nhau qua O.
c) Từ E vẽ Ex // AC cắt BC tại I, vẽ Fy // AC cắt AD tại K.
Chứng minh rằng: Tứ giác KEIF là hình bình hành.
Cho hình bình hành ABCD, trên cạnh AB lấy điểm E và trên cạnh CD lấy điểm F sao cho AE = CF. Gọi O là giao điểm của AC và BD. Chứng minh E và F đối xứng qua O.
Cho hình bình hành ABCD, trên cạnh AB lấy điểm E và trên cạnh CD lấy điểm F sao cho AE = CF. Gọi O là giao điểm của AC và BD. Chứng minh E và F đối xứng qua O.
Bài 4 (3,0 điểm). Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE = CF. a) Chứng minh tứ giác AECF là hình bình hành. b) Chứng minh DE = BF c) Gọi O là giao điểm của AC và BD. I là điểm đối xứng của A qua D. Chứng minh OD // CI. d) Chứng minh BD, EF, AC đồng quy tại một điểm.
cho hình bình hành ABCD trên AB và CD lấy các điểm E,F sao cho AE=CF gọi O là giao điểm của AC và BD. CMR: E,F đối xứng nhau qua O