cho hình bình hành abcd có e là hình chiếu của a và f là hình chiếu của c lên đường chéo bd
1chung minh rằng tam giác ade=tam giác cbf
2,chứng minh rằng tứ giác aecf là hình bình hành
Cho tam giác ABC có 3 góc nhọn ( AB > AC) đường cao AH. Gọi M,N,E lần lượt là trung điểm của các cạnh AB, AC và BC
a) CM : BMNE là hình bình hành
b) CM: MN là đường trung trực của AH và tứ giác MNHE là hình bình hành
c) Gọi I là giao điểm của MN với A,F là hình chiếu của N lên BC , K là hình chiếu của H lên AC . CM: IF vuông góc với HK
Cho hình bình hành ABCD (AC>BD) kẻ BE,DF vuông góc vs AC (E,F thuộc AC)
1) cm: tam giác ABE = tam giác CDF. Tứ giác BDEF là hình bình hành
2) Gọi H và K thứ tự là hình chiếu của C lên AB.
cHỨNG MINH: tam giác ADF ~ tam giác ACK
3) Chứng minh AC^2=AB.AH+AD.AK
Cho hình bình hành ABCD. O là giao điểm 2 đường chéo. E,F,G,H là hình chiếu của O lên AB,BC,CD,DA. Tìm điề kiện của hình bình hành ABCD để tứ giác ÈH là hình chữ nhật.
Cho hình bình hành ABCD. Gọi O là giao điiểm của hai đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F
1/ CM: O là trung điểm È
2/ CM tứ giác AECF là HBH
3/ CM tứ giác BEDF là hình bình hành
Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F. CMR:
a) DE // BF
b) Tứ giác DEBF là hình gì?
c) Tam giác ADE = Tam giác CBF
d) C/m: Tứ giác AECF là hình bình hành
e) AC, DB, EF đồng quy
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Chứng minh tứ giác BEDF là hình bình hành.
b) CMR: CH.CD=CB.CK
c) CMR: AB.AH+AD.AK=AC2
Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Chứng minh tứ giác BEDF là hình bình hành.
b) CMR: CH.CD=CB.CK
c) CMR: AB.AH+AD.AK=AC2
mng giúp mình với ạ<33
B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.
1) C/m : tứ giác AMND là hình bình hành.
2) C/m: tứ giác AMCN là hình bình hành.
B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.
1) C/m: O là trung điểm của EF.
2) C/m: tứ giác AECF là hình bình hành
3) C/m: tứ giác BDEF là hình bình hành.
B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.
1) C/m: tứ giác AECF là hình bình hành.
2) C/m: O là trung điểm của EF.
B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.
1)C/m : tứ giác MNPQ là hình bình hành.
2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.
Giúp mik với nha, thanks !!!!