Ta có: \(\widehat{ADE}=\widehat{CDE}=\dfrac{\widehat{ADC}}{2}\)(DE là phân giác của góc ADC)
\(\widehat{ABF}=\widehat{CBF}=\dfrac{\widehat{ABC}}{2}\)(BF là phân giác của góc ABC)
mà \(\widehat{ADC}=\widehat{ABC}\)(ABCD là hình bình hành)
nên \(\widehat{ADE}=\widehat{CDE}=\widehat{ABF}=\widehat{CBF}\)
Xét ΔADE và ΔCBF có
\(\widehat{EAD}=\widehat{FCB}\)(ABCD là hình bình hành)
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)(cmt)
Do đó: ΔADE=ΔCBF
=>AE=CF
Ta có: AE+EB=AB
CF+FD=CD
mà AE=CF và AB=CD
nên EB=FD
Ta có: AB//CD
E\(\in\)AB
F\(\in\)CD
Do đó: BE//DF
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành