cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
cho hệ phương trình sau \(\left\{{}\begin{matrix}mx-2y=3\\x-my=4\end{matrix}\right.\). tìm m để hệ phương trình trên có nghiệm duy nhất
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Cho hệ phương trình
\(\left\{{}\begin{matrix}mx+x=1\\2x-y=m\end{matrix}\right.\)
a) Giải hệ phương trình với m= -1
b) Tìm m để hệ phương trình có nghiệm duy nhất với mọi m x>0
y \(\le\) 0
Bài 3: Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
a) Giải hệ khi m=1
b) Tìm tất cả các giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y=2
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x-2y=1\\3x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình khi \(m=\sqrt{3}+1\)
b) Chứng minh rằng hệ phương trình có 1 nghiệm duy nhất với mọi \(m\)
c) Tìm \(m\) để \(x-y\) đạt giá trị nhỏ nhất
Cho hệ phương trình \(\left\{{}\begin{matrix}x+\left(m-1\right)y=2\\\left(m+1\right)x-y=m+1\end{matrix}\right.\)
a, giải hệ với m = 1/2
b, Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>y
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho tích xy nhỏ nhất?
Cho hệ phương trình :
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình theo tham số m.
b) Trong trường hợp hệ phương trình có nghiệm duy nhất (x, y). Tìm các giá trị của m để x + y = -1.