\(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy=-\frac{5}{4}\\x^4+y^2+2x^2y+xy=-\frac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)\left(xy+1\right)+xy=-\frac{5}{4}\\\left(x^2+y\right)^2+xy=-\frac{5}{4}\end{matrix}\right.\)
Trừ vế cho vế: \(\left(x^2+y\right)\left(x^2+y-xy-1\right)=0\)
\(\Leftrightarrow\left(x^2+y\right)\left(x-1\right)\left(x+1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+1\\y=-x^2\end{matrix}\right.\) thế vào pt đầu và giải bt
Đúng 0
Bình luận (0)