Bài 5. ÔN TẬP CUỐI NĂM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
CAO Thị Thùy Linh

Cho hệ phương trình \(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\) biết rằng hệ đã cho có 2 nghiệm \(\left(x_1;y_1\right);\left(x_2;y_2\right)\)

Tính tổng hai nghiệm \(x_1^3+x_2^3\)

Nguyễn Việt Lâm
18 tháng 6 2020 lúc 22:54

\(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy=-\frac{5}{4}\\x^4+y^2+2x^2y+xy=-\frac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)\left(xy+1\right)+xy=-\frac{5}{4}\\\left(x^2+y\right)^2+xy=-\frac{5}{4}\end{matrix}\right.\)

Trừ vế cho vế: \(\left(x^2+y\right)\left(x^2+y-xy-1\right)=0\)

\(\Leftrightarrow\left(x^2+y\right)\left(x-1\right)\left(x+1-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+1\\y=-x^2\end{matrix}\right.\) thế vào pt đầu và giải bt