a: Xét ΔCBD vuông tại C và ΔCEB vuông tại C có
góc CBD=góc CEB
=>ΔCBD đồng dạng với ΔCEB
b: Xét ΔBCD vuông tại C và ΔCFB vuông tại F có
góc CBD=góc FCB
=>ΔBCD đồng dạng với ΔCFB
=>BC/CF=BD/BC
=>BC^2=BD*CF
a: Xét ΔCBD vuông tại C và ΔCEB vuông tại C có
góc CBD=góc CEB
=>ΔCBD đồng dạng với ΔCEB
b: Xét ΔBCD vuông tại C và ΔCFB vuông tại F có
góc CBD=góc FCB
=>ΔBCD đồng dạng với ΔCFB
=>BC/CF=BD/BC
=>BC^2=BD*CF
Cho hình chữ nhật ABCD có AB=8cm , BC=6cm và hai đường chéo cắt nhau tại O . qua B kẻ đường thẳng a vuông góc với BD , a cắt DC tại E.
a/ cm tam giác BCE đồng dạng với DBE
b/ kẻ đường cao CH của tam giác BCE . chứng minh BC^2=CD.BD
Cho hình chữ nhật ABCD (AD <AB) . Hai đường chéo AC và BD cắt nhau tại O. Qua D kẻ đường thẳng vuông góc với BD cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giácDCE .
b) Kẻ CH vuông góc với DE tại H . Chứng minh rằng: 2 . DC CH DB = . Từ đó tính
độ dài CH biết AD = 6cm ; AB = 8cm.
c) Gọi K là giao điểm của OE và HC . Chứng minh:
HK /OD=EK/EO, từ đó suy ra: K là trung điểm của HC .
d) Chứng minh ba đường thẳng ,, OE. CD .BH đồng quy
Cho hình chữ nhật ABCD có AB=8cm, BC=6cm và hai đường chéo cắt nhau tại O. Qua B kẻ đường thẳng a vuông góc với BD, a cắt DC tại E.
a) Chứng minh tam giác BCE~tam giác DBE
b) Kẻ đường cao CH của tam giác BCE. Chứng minh BC^2=CH.BD
c) Tính tỉ số diện tích tam giác CEH và diện tích của tam giác DBE
d) Chứng minh 3 đường OE, BC, DH đồng quy
cho tam giác ABC vuông tại A ,AH là đường cao BD là đường phân giác kẻ DE vuông góc với BC đường thẳng DE cắt AB tại F tính BC và AH chứng minh tam giác EBF đồng dạng với EDC gọi I là giao điểm AH và BD chứng minh AB.BI =BH.BD chứng minh BD vuông góc với CF
Cho hình chữ nhật ABCD có cạnh AB=4cm , BC =3cm.
a, Tính độ dài đoạn BD.
b, Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. chứng minh: tam giác BCD đồng dạng với tam giác CFB và tính CF
c, Gọi O là giao điểm của AC & BD. Nối Eo cắt CF tại I , cắt BC tại K. Chứng minh I là trung điểm của đoạn CF.
d, Chứng minh 3 điểm D, K, F thẳng hàng.
Cho hình chữ nhật ABCD có AD = 6cm,AB = 8cm và 2 đường chéo cắt nhau tại O . Qua D kẻ đường thẳng d vuông góc với DB , d cắt tia BC tại E .
a) Chứng minh tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc với DE tại H . Chứng minh DC^2 = CH.DB
c) Gọi K là giao điểm của OE và HC . Chứng minh K là trung điểm của HC và tính tỉ số S tam giác EHC phần S tam giác EDB
d) Chứng minh 3 đường thẳng OE,DC,BH đồng quy
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho hình chữ nhật ABCD có AB=4 cm, AD=3cm. Qua B vẽ đường thẳng vuông góc với BD cắt DC tại E.
a) Chứng minh tam giác BDC đồng dạng tam giác EDB và DB2=DC.DE
b) Tính DB, CE
c) Vẽ CF vuông góc với BE tại F. Gọi O là giao điểm của AC và BD. Nối OE cắt CF tại I và cắt BC tại K. Chứng minh I là trung điểm của CF
d) Chứng minh 3 điểm D,K,F thẳng hàng