Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [ 0 ; 2 ] và thỏa mãn f ( 0 ) = 2 , ∫ 0 2 ( 2 x - 4 ) . f ' ( x ) d x = 4 . Tính tích phân I = ∫ 0 2 f ( x ) d x .
A. I = 2
B. I = - 2
C. I = 6
D. I = - 6
Cho hàm số f(x) và g(x) liên tục, có đạo hàm trên R và thỏa mãn f ' 0 . f ' 2 ≠ 0 và g x f ' x = x x - 2 e x . Tìm giá trị của tích phân I = ∫ 0 2 f x g ' x d x
A. -4
B. e - 2
C. 4
D. 2 - e
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và ∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x f ( x ) d x = e 2 - 1 4 Tính tích phân I= I = ∫ 0 1 f ( x ) d x
A. I=2-e
B. I=e-2
C. I=e/2
D. I = e - 1 2
Cho hàm số f ( x ) có đạo hàm liên tục trên đoạn 1 ; 2 thỏa mãn f ( 2 ) = 0 , ∫ 1 2 f ( x ) 2 d x = 1 45 và ∫ 1 2 x - 1 f x d x = - 1 30 . Tính I = ∫ 1 2 f ( x ) d x .
A. I = - 1 12
B. I = - 1 15
C. I = - 1 36
D. I = 1 12
Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn điều kiện:
∫ 0 1 f ' x 2 d x = ∫ 0 1 x + 1 e x . f x d x = e 2 - 1 4 và f(1) = 0 Tính giá trị tích phân I = ∫ 0 1 f x d x
A. e - 1 2
B. e 2 4
C. e - 2
D. e 2
Cho hàm số f(x) có đạo hàm liên tục trên [0;1] thỏa mãn điều kiện:
0 1 f ' x 2 d x = 0 1 x + 1 e x . f x d x = e 2 − 1 4 và f(1) = 0. Tính giá trị tích phân I = 0 1 f x d x .
A. e − 1 2 .
B. e 2 4 .
C. e - 2
D. e 2 .
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Cho hàm số y = f(x) liên tục và có đạo hàm trên R thỏa mãn f 2 = − 2 ; 0 2 f x d x = 1. Tính tích phân I = 0 4 f ' x d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số f(x) có đạo hàm liên tục trên 0 ; 1 thỏa mãn điều kiện: ∫ 0 1 f ' x 2 d x = x + 1 . e x . f x d x = e 2 - 1 4 và f 1 = 0 .Tính giá trị tích phân I = ∫ 0 1 f x d x .
A. e - 1 2
B. e 2 4
C. e - 2
D. e 2