Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>
Cho số thực a > 0. Gỉa sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f x . f a − x = 1. Tính tích phân I = ∫ 0 a 1 1 + f x d x
A. I = a 3
B. I = a 2
C. I = a
D. I = 2 a 3
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên (0;+∞) và thỏa mãn f(1)=1, f ( x ) = f ' ( x ) 3 x + 1 , với mọi x>0. Mệnh đề nào sau đây đúng
A. 1<f(5)<2
B. 4<f(5)<5
C. 2<f(5)<3
D. 3<f(5)<4
Giả sử hàm số y = f(x) đồng biến trên ( 0 ; + ∞ ) ; liên tục và nhận giá trị dương trên ( 0 ; + ∞ ) và thỏa mãn f ( 3 ) = 2 3 và [ f ' ( x ) ] 2 = ( x + 1 ) . f ( x ) . Mệnh đề nào dưới đây đúng?
A . 2613 < f 2 ( 8 ) < 2614 .
B. 2614 < f 2 ( 8 ) < 2615 .
C. 2618 < f 2 ( 8 ) < 2619 .
D. 2616 < f 2 ( 8 ) < 2617 .
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và ∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x f ( x ) d x = e 2 - 1 4 Tính tích phân I= I = ∫ 0 1 f ( x ) d x
A. I=2-e
B. I=e-2
C. I=e/2
D. I = e - 1 2
Cho hàm số f (x) nhận giá trị dương, có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) thỏa mãn 2 f ' ( x ) ( f ( x ) ) 2 = f ( x ) ( x + 2 ) x 3 , ∀ x > 0 và f ( 1 ) = 1 3 . Tích phân ∫ 1 2 1 ( f ( x ) ) 2 d x bằng
A. 11 2 +ln2
B. - 1 2 +ln2
C. 3 2 +ln2
D. 7 2 +ln2
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [1;2] thỏa mãn ∫ 1 2 ( x - 1 ) 2 f ( x ) d x = - 1 3 , f(2) = 0 và ∫ 1 2 f ' ( x ) 2 d x = 7 . Tính tích phân ∫ 1 2 f ( x ) d x
A. I = 7 5
B. I = - 7 5
C. I = - 7 20
D. I = 7 20
Cho hàm số y=f(x) có đạo hàm liên tục đoạn [0;1] thỏa mãn f(0)=0,f(1)=1 và ∫ 0 1 1 + x 2 [ f ' ( x ) ] 2 d x = 1 l n 2 . Tích phân ∫ 0 1 f ( x ) 1 + x 2 d x bằng
A. 1 2 ln 2 1 + 2 .
B. 2 - 1 2 ln 2 1 + 2 .
C. 1 2 ln 1 + 2 .
D. 2 - 1 ln 1 + 2 .
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ] d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6