Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hàm số y=f(x) có đồ thị như hình bên. Có bao nhiêu số nguyên m để bất phương trình m x + m 2 5 - x 2 + 2 m + 1 f ( x ) ≥ 0  nghiệm đúng với mọi m ∈ - 2 ; 2 ?

A. 1

B. 3

C. 0

D. 2

Cao Minh Tâm
23 tháng 9 2017 lúc 11:50

Đặt g ( x ) = m x + m 2 5 - x 2 + 2 m + 1 f ( x )  thì g(x) là hàm số liên tục trên [-2;2] 

Từ đồ thị =f(x) ta thấy có nghiệm đối dấu là x=1 

Do đó để bất phương trình m x + m 2 5 - x 2 + 2 m + 1 f ( x ) ≥ 0 nghiệm đúng với mọi  x ∈ - 2 ; 2  thì điều kiện cần là x=1 phải là nghiệm của h ( x ) = m x + m 2 5 - x 2 + 2 m + 1

h ( 1 ) = m + 2 m 2 + 2 m + 1 ⇔ [ m = - 1 m = - 0 , 5

Do bài cần m nguyên nên ta thử lại với m=-1

h ( x ) = 5 - x 2 - x - 1 ≥ 0 , ∀ x ∈ - 2 ; 1

và  h ( x ) = 5 - x 2 - x - 1 ≤ 0 , ∀ x ∈ - 2 ; 1

Dựa theo dấu y=f(x) trên đồ thị ta suy ra

g ( x ) = m x + m 2 5 - x 2 + 2 m + 1 f ( x ) ≥ 0 , ∀ x ∈ - 2 ; 2

Vậy m=-1 thỏa mãn điều kiện bài ra.

Chọn đáp án A.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết