Đáp án C
Phương pháp:
Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ
Để từ A kẻ được hai tiếp tuyến đến (C) thì phương trình (1) có 2 nghiệm phân biệt. Tìm điều kiện của a để phương trình có 2 nghiệm phân biệt. Có bao nhiêu giá trị của a thì có bấy nhiêu điểm thỏa mãn yêu cầu bài toán.
Cách giải:
TXĐ : D = R.
9 a − 14 = 3 x 0 2 − 3 a − x 0 + x 0 3 − 3 x 0 + 2 1
⇔ 9 a − 14 = 3 a x 0 2 − 3 x 0 3 − 3 a + 3 x 0 + x 0 3 − 3 x 0 + 2
⇔ − 2 x 0 3 + 3 a x 0 2 − 12 a + 16 = 0
⇔ x 0 − 2 − 2 x 0 2 + 3 a − 4 x 0 + 6 a − 8 = 0
Để qua A kẻ được 2 tiếp tuyến đến đồ thị (C) thì phương trình (1) có 2 nghiệm phân biệt.
TH1 : x 0 = 2 là nghiệm của phương trình (2) ta có :
TH2 : x 0 = 2 không là nghiệm của phương trình (2), khi đó để (1) có 2 nghiệm phân biệt thì (2) có nghiệm kép khác 2.
Vậy có 3 giá trị của a thỏa mãn yêu cầu bài toán.
Chú ý và sai lầm: Cần phải làm hết các trường hợp để phương trình (1) có 2 nghiệm, tránh trường hợp thiếu TH1 và chọn nhầm đáp án B.