Đáp án B
TXĐ: D = ℝ \ 1 . Hàm số đã cho nghịch biến trên mỗi khoảng xác định.
Đáp án B
TXĐ: D = ℝ \ 1 . Hàm số đã cho nghịch biến trên mỗi khoảng xác định.
Tìm giá trị của m để hàm số y = x + m x 2 + 1 đồng biến trong khoảng 0 ; + ∞
A. m ≤ 0
B. m ≤ 1
C. m ≤ -1
D. m ≤ 2
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Tìm m để hàm số y = tan 2 x - 2 m tan x + 2 m 2 - 1 tan x - m đồng biến trên khoảng ( 0 ; π 4 ]
A. m ≤ 0 , m ≥ 1
B. m ≤ 0
C. m ≤ 0 , m = 1
D. m ≥ 1
Tìm tất cả các giá trị của tham số m để hàm số y = tan x - 2 tan x - m + 1 đồng biến trên khoảng 0 ; π 4 .
A. m ≥ 1
B. m > 3
C. 2 ≤ m < 3
D. m ≤ 1 2 ≤ m < 3
Tìm tất cả các giá trị của m để hàm số y = x - 1 x + m đồng biến trên khoảng 0 ; + ∞ ?
A. - 1 ; + ∞
B. [ 0 ; + ∞ )
C. 0 ; + ∞
D. [ - 1 ; + ∞ )
Tìm m của hàm số y = 5 - x + 2 5 - x - m đồng biến trên khoảng (-∞;0).
A. m < -2
B. m > -2
C. m ≤ -2
D. -2 < m ≤ 1
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = m cos x + 1 cos x + m đồng biến trên khoảng 0 ; π 3
A. - 1 ; 1
B. - ∞ ; - 1 ∪ 1 ; + ∞
C. [ - 1 ; - 1 2 )
D. - 1 ; - 1 2
Tìm tất cả các giá trị của tham số m để hàm số y = x 2 + 2 x 2 - m x + 1 đồng biến trên khoảng (-∞;0)
A. m ≥ -2
B. m ≤ -3
C.m ≤ -1
D.m ≤ 0
Tìm m để hàm số y = 2 cos x + 1 cos x − m đồng biến trên khoảng 0 ; π
A. m ≤ 1
B. m ≥ − 1 2
C. m > 1 2
D. m ≥ 1