Giả sử m = - a b , a , b ∈ Z + , ( a , b ) = 1 là giá trị thực của tham số m để đường thẳng d : y = - 3 x + m cắt đồ thị hàm số y = 2 a + 1 x - 1 tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng ∆ : x - 2 y - 2 = 0 với O là gốc tọa độ. Tính a+2b
A. 2
B. 5
C. 11
D. 21
Cho hàm số y = x x − 1 có đồ thị = C và đường thẳng d : y = − x + m . Khi đó số giá trị của m để đường thẳng d cắt đồ thị C tại hai điểm phân biệt A, B sao cho tam giác OAB (O là gốc tọa độ ) có bán kính đường tròn ngoại tiếp bằng 2 2 là:
A.0
B. 3
C. 1
D. 2
Giá trị của để đường thẳng d: x + 3y + m = 0 cắt đồ thị hàm số y = 2 x - 3 x - 1 tại hai điểm sao cho tam giác vuông tại điểm A(1;0) là:
A. m = 6
B. m = 4
C. m = - 6
D. m = - 4
Giá trị của để đường thẳng d: x + 3y + m = 0 cắt đồ thị hàm số y = 2 x - 3 x - 1 tại hai điểm sao cho tam giác vuông tại điểm A(1;0) là:
A. m = 6
B. m = 4
C. m = - 6
D. m = - 4
Tìm tất cả các giá trị thực của tham số m để đồ thị (C) của hàm số y = 2 x + 3 x - 1 cắt đường thẳng △ : y = x + m tại hai điểm phân biệt A và B sao cho tam giác OAB vuông tại O
A. m = - 3
B. m = 6
C. m = 5
D. m = - 1
Cho hàm số y = x + 1 x − 2 Số các giá trị tham số m để đường thẳng y = m + x luôn cắt đồ thị hàm số tại hai điểm phân biệt A, B sao cho trọng tâm tam giác OAB nằm trên đường tròn x 2 + y 2 − 3 y = 4 là
A. 1
B. 0
C. 3
D. 2
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = 2 x x − 2 cắt đường thẳng y = x + m tại hai điểm phân biệt A,B sao cho tam giác OAB nhận G 1 ; 5 3 làm trọng tâm.
A. m=3
B. m=4
C. m=1
D. m=7
Cho hàm số: y = x 3 + 2 m x 2 + 3 m − 1 x + 2 có đồ thị (C) Đường thẳng d : y = − x + 2 cắt đồ thị (C) tại ba điểm phân biệt A 0 ; − 2 , B v à C . Với M 3 ; 1 , giá trị tham số m để tam giác MBC có diện tích bằng 2 6 là:
A. m=-1
B. m = -1 hoặc m=4
C. m =4
D. không tồn tại m