Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = l n ( 2 x 2 + e 2 ) trên [0;e]. Mệnh đề nào sau đây đúng
A. M + m = 5
B. M + m = 4 + ln3
C. M + m = 4 + ln2
D. M + m = 2 + ln3
Cho hàm số y = ln x - 4 ln x - 2 m với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đổng biến trên khoảng (1;e). Tìm số phần tử của S.
A. 2.
B. 4.
C. 3.
D. 1.
Cho hàm số y = f ( x ; m ) có đồ thị hàm số y = f ' ( x ; m ) như hình vẽ
Biết f ( a ) > f ( c ) > 0 ; f ( b ) < 0 < f ( e ) Hỏi hàm số y = f ( x , m ) có bao nhiêu điểm cực trị?
A. 5
B. 7
C. 9
D. 10
Cho các phát biểu sau
(1) Đơn giản biểu thức M = a 1 4 - b 1 4 a 1 4 + b 1 4 a 1 2 + b 1 2 ta được M = a - b
(2) Tập xác định D của hàm số y = log 2 ln 2 x - 1 là D = e ; + ∞
(3) Đạo hàm của hàm số y = log 2 ln x là y ' = 1 x ln x . ln 2
(4) Hàm số y = 10 log a x - 1 có đạo hàm tại mọi điểm thuộc tập xác định
Số các phát biểu đúng là
A. 6
B. 1
C. 3
D. 4
Đồ thị hàm số y = - x 3 + 3 m x + 1 có 2 điểm cực trị A,B x A < x B sao cho tứ giác ABOE là hình bình hạnh với O là gốc tọa độ và điểm E(-4;-32). Tìm tất cả các giá trị thực của tham số m.
A. m = 1
B. m = 4
C. m = 2
D. m ∈ ∅
Gọi M, N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 . e − x trên đoạn − 1 ; 1 . Tính tổng M+N.
A. M + N = 3 e
B. M + N = e
C. M + N = 2 e − 1
D. M + N = 2 e + 1
Cho hàm số \(y=x^3+3x^2+mx+1\)\(\left(C_m\right)\)
Tìm m để \(\left(C_m\right)\) cắt đường thẳng y=1 tại 3 điểm phân biệt C (0;1), D, E. Tìm m để các tiếp tuyến tại D, E vuông góc với nhau
Cho hàm số y = x 4 - 2 ( m + 1 ) x 2 + m + 2 có đồ thị (C) . Gọi ∆ là tiếp tuyến với đồ thị (C) tại điểm thuộc (C) có hoành độ bằng 1. Với giá trị nào của tham số m thì ∆ vuông góc với đường thẳng d: y = - 1 4 x - 2016
A. m=-1
B. m=0
C. m=1
D. m=2
Giả sử đường thẳng y=x+m cắt đồ thị (C) của hàm số y = x − 1 1 − 2 x tại hai điểm phân biệt E và F. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại E và F. Tìm giá trị nhỏ nhất minS của biểu thức S = k 1 4 + k 2 4 − 3 k 1 k 2 .
A. min S = − 1
B. min S = − 5 8
C. min S = 135
D. min S = − 25 81
Giả sử đường thẳng y = x + m cắt đồ thị (C) của hàm số y = x − 1 1 − 2 x tại hai điểm phân biệt E và F. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với C tại E và F. Tìm giá trị nhỏ nhất minS của biểu thức S = k 1 4 + k 2 4 − 3 k 1 k 2 .
A. min S = − 1
B. min S = − 5 8
C. min S = 135
D. min S = − 25 81