a) Tìm giá trị m để hàm số đạt min=5
b) Tìm giá trị của m để đường thẳng y=5 cắt đồ thị hàm số y=2x^2-4mx+5 tại 2 điểm phân biệt A và B sao cho AB= căn 6
Cho hàm số y = x 2 − 2 x − 2 có đồ thị (P), và đường thẳng (d) có phương trình y = x + m . Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho O A 2 + O B 2 đạt giá trị nhỏ nhất
A. m = − 5 2
B. m = 5 2
C. m = 1
D. m = 2
cho hàm số \(y=x^2-2x-2\) có đồ thị là parabol (P) và đường thẳng d có phương trình y = x - m. giá trị của m để đường thẳng d cắt (P) tại 2 điểm phân biệt A, B sao cho \(OA^2+OB^2\) đạt giá trị nhỏ nhất
1) Cho hàm số: \(y=x^2-3x+4\) có đồ thị là P và đường thẳng d có phương trình:
\(y=2x-m\), và m là tham số. Tìm các giá trị của m để d cắt P tại hai điểm phân biệt \(A,B\) sao cho: \(OA^2+OB^2=57\) và khi đó O là toa độ góc
2) Cho hàm số \(f\left(x\right)=\sqrt{3-x}-\sqrt{3+x}-x^3-x\). Tìm tất cả giá trị của tham số a để tập nghiệm của bất phương trình \(f\left(2x-1\right)>f\left(-2a\right)\) có ít nhất là 3 số nguyên
Cho hàm số 2x2-4mx-m+5. Có tất cả bao nhiêu giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5 ?
cho hàm số y=\(\sqrt{2x^2-2x-m}-x-1\)
có đồ thị (C)
tìm tất cả các giá trị nguyên dương của m để đồ thị (C) cắt trục hoành tại 2 điểm phân biệt
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 2
A. m = -3
B. m = 3
C. m = 0
D. m = -1
Cho hàm số y=\(x^2-2\left(m+1\right)x+2m+1\) (1)
Tìm giá trị của tham số m để đồ thị hàm số (1) cắt trục Ox tại hai điểm phân biệt A,B và cắt trục Oy tại C sao cho tam giác ABC có diện tích bằng 3
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
A. m = 7
B. m = 3
C. m = -7
D. m = ± 7