Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuấn Tú
Cho hàm số y = 2x và y = -3x +5 Tìm tọa độ giao điểm M của hai hàm số nói trên. Gọi A, B lần lượt là giao điểm của đường thẳng y=-3x+5 với trục hoành và trục tung. Tính diện tích tam giác OAB và tam giác OMA
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 13:45

a: Phương trình hoành độ giao điểm là:

2x=-3x+5

=>5x=5

=>x=1

Thay x=1 vào y=2x, ta được:

\(y=2\cdot1=2\)

Vậy: M(1;2)

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-3x+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy: A(5/3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-3\cdot0+5=5\end{matrix}\right.\)

Vậy: B(0;5)

O(0;0); A(5/3;0); B(0;5)

=>\(OA=\sqrt{\left(\dfrac{5}{3}-0\right)^2+\left(0-0\right)^2}=\dfrac{5}{3}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(5-0\right)^2}=5\)

Vì A,B là giao điểm của (d): y=-3x+5 với trục Ox và trục Oy nên ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{5}{3}\cdot5=\dfrac{25}{6}\)

M(1;2); O(0;0); A(5/3;0)

\(OA=\sqrt{\left(\dfrac{5}{3}-0\right)^2+\left(0-0\right)^2}=\dfrac{5}{3}\)

\(OM=\sqrt{\left(1-0\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

\(MA=\sqrt{\left(\dfrac{5}{3}-1\right)^2+\left(0-2\right)^2}=\dfrac{2\sqrt{10}}{3}\)

Xét ΔOAM có \(cosAOM=\dfrac{OA^2+OM^2-AM^2}{2\cdot OA\cdot OM}=\dfrac{\sqrt{5}}{5}\)

=>\(sinAOM=\sqrt{1-\left(\dfrac{\sqrt{5}}{5}\right)^2}=\dfrac{2}{\sqrt{5}}\)

\(S_{AOM}=\dfrac{1}{2}\cdot OA\cdot OM\cdot sinAOM\)

\(=\dfrac{1}{2}\cdot\sqrt{5}\cdot\dfrac{5}{3}\cdot\dfrac{2}{\sqrt{5}}=\dfrac{5}{3}\)


Các câu hỏi tương tự
Cỏ dại
Xem chi tiết
dazzling
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Thai Phuong Anh
Xem chi tiết
Trần Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
pham thi lan
Xem chi tiết
Hà Kiều Anh
Xem chi tiết