Cho hàm số y = 2 x 3 + 3 m − 1 x 2 + 6 m − 2 x − 1. Gọi S là tập hợp tất cả các giá trị thực của m để hàm số có hai điểm cực trị đều thuộc (-2;1). Khi đó tập S là
A. S = 1 ; 4 .
B. S = ℝ \ 3 .
C. S = − ∞ ; 1 ∪ 4 ; + ∞ .
D. S = 1 ; 4 \ 3 .
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = - x - 1 3 + 3 m 2 x - 1 - 2 có hai điểm cực trị cách đều gốc tọa độ. Tổng các giá trị tuyệt đối của tất cả các phần tử thuộc S là
A. 4.
B. 2/3
C. 1.
D. 5.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị là A và B sao cho đường thẳng AB vuông góc với đường thẳng d : y = x + 2 Số phần tử của S là
A. 0
B. 1
C. 2
D. 3
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 2 + m x + m x - 1 có hai điểm cực trị A, B. Khi A B C ^ = 90 ∘ thì tổng bình phương tất cả các phần tử của S bằng
A. 1/16
B. 8
C. 1/8
D. 16
Hình vẽ bên là đồ thị của hàm số y = f(x). Gọi S là tập hợp các số nguyên dương của tham số m để hàm số y = |f(x – 1) + m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Gọi S là tập tất cả các giá trị thực của tham số m để hàm số y = x 2 + 1 - m x đồng biến trên nửa khoảng [ 3 ; + ∞ ) . Biết rằng S có dạng ( - ∞ ; a ] ∈ ℝ . Trên a 2 ; 2018 a 2 có tất cả bao nhiêu giá trị nguyên?
A. 1816
B. 1815
C. 1914
D. 1913
Cho hàm số f ( x ) = ( m - 1 ) x 3 + 2 x - m + 1 Gọi S là tập chứa tất cả các giá trị thực của tham số m để hàm số có đạo hàm tại x = 0. Số phần tử của tập S là
A. 0
B. 1
C. 2
D. 3