Cho hàm số y = 2 x - 1 x - 1 có đồ thị (C). Tìm tất cả các giá trị thực của tham số m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt A, B sao cho AB = 4
A. m = -1
B. [ m = 0 m = 3
C. [ m = - 1 m = 3
D. m = 4
Cho hàm số y = 2 x − 1 x − 1 có đồ thị (C). Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = x + m cắt (C) tại hai điểm phân biệt A, B sao cho AB = 4
A. m = − 1.
B. m = 0 m = 3 .
C. m = − 1 m = 3 .
D. m = 4.
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m x − m + 1 cắt đồ thị hàm số y = x 3 − 3 x 2 + x + 2 tại ba điểm phân biệt A, B, C sao cho AB=BC.
A. m ∈ − ∞ ; 0 ∪ 4 ; + ∞
B. m ∈ ℝ
C. m ∈ − 5 4 ; + ∞
D. m ∈ − 2 ; + ∞
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m x - m - 1 cắt đồ thị hàm số y = x 3 - 3 x 2 + x tại ba điểm A, B, C phân biệt sao cho AB = BC.
A. m ∈ - 5 4 ; + ∞
B. m ∈ ( - ∞ ; 0 ) ∪ ( 4 ; + ∞ )
C . m ∈ ( - 2 ; + ∞ )
D . m ∈ R
Tìm tất cả các giá trị thực của tham số m để đồ thị (C) của hàm số y = 2 x + 3 x - 1 cắt đường thẳng △ : y = x + m tại hai điểm phân biệt A và B sao cho tam giác OAB vuông tại O
A. m = - 3
B. m = 6
C. m = 5
D. m = - 1
Cho hàm số y = 2 x - 1 x - 1 có đồ thị (C) và đường thẳng d : y = x + m . Tìm tất cả các tham số m dương để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt A,B sao cho A B = 10 .
A. m = 2 .
B. m =1.
C. m = 0.
D. m = 0 và m = 2 .
Cho hàm số y = 2 x + 1 x + 1 có đồ thị (C) và đường thẳng d:y=x+m. Giá trị của tham số m để d cắt (C) tại hai điểm phân biệt A, B sao cho A B = 10 là:
A.m=-1 hoặc m=6 hoặc m=7
B. 0 ≤ m ≤ 5
C.m=0 hoặc m=6
D.m=0
Tìm tất cả các giá trị của tham số m để đường thẳng y = ( m - 1 ) x cắt đồ thị hàm số y = x 3 - 3 x 2 + m + 1 tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. m ∈ ( - ∞ ; 0 ] ∪ [ 4 ; + ∞ )
B. m ∈ ( - 5 4 ; + ∞ )
C. m ∈ ( - 2 ; + ∞ )
D. m ∈ ℝ