Chọn C.
Đồ thị hàm số có tiệm cận đứng là x=-3, tiệm cận ngang là y=2. Do đó diện tích là 6.
Chọn C.
Đồ thị hàm số có tiệm cận đứng là x=-3, tiệm cận ngang là y=2. Do đó diện tích là 6.
Cho hàm số y = x - 3 x - m 2 + 1 (m là tham số; m ≠ ± 2 ). Có bao nhiêu giá trị của tham số m để hình phẳng giới hạn bởi hai trục tọa độ và hai đường tiệm cận của đồ thị hàm số đã cho là một hình vuông.
A. 1
B. 3
C. 2
D. 4.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x 3 , trục hoành và hai đường thẳng x = -1, x = 2, biết rằng mỗi đơn vị dài trên các trục tọa độ là 2 cm.
A. 15 ( c m 2 )
B. 15 4 ( c m 2 )
C. 17 4 ( c m 2 )
D. 17 ( c m 2 )
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x=0 có diện tích bằng:
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = − 1 ; x = 0 có diện tích bằng:
A. 2 5 .
B. 1 9 .
C. 2 9 .
D. 1 5 .
Cho hàm số y = x − m 2 x + 1 (với m là tham số khác 0) có đồ thị là (C). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn S = 1?
A. Hai
B. Ba
C. Một
D. Không
Cho hàm số y = x - m 2 x + 1 (với m là tham số khác 0) có đồ thị (C). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị (C) và hai trục tọa độ. Có bao nhiêu giá trị thực của m thỏa mãn S = 1?
A. 0.
B. 1
C. 2
D. 3.
Cho hàm số y = f (x) liên tục trên
[ a ;b ]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f (x) , trục hoành và hai đường thẳng x = a, x = b( a < b) là:
A. ∫ b a f x d x
B. ∫ a b f x d x
C. ∫ a b f x d x
D. ∫ b a f x d x
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A − 1 ; 0 . Tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2. Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0, x=2 bằng 28 5 (phần tô đậm trong hình vẽ).
Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x= -1, x=0 có diện tích bằng
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = 3 x 2 + 1 , trục hoành và hai đường thẳng x = 0, x = 2 là
A. S = 8
B. S = 12
C. S = 10
D. S = 9