Cho hàm số y = f(x) liên tục trên ℝ, f(x) >0 ∀ x ∈ ℝ thỏa mãn ln f x + f x - 1 = ln x 2 + 1 e x 2 .Tính I = ∫ 0 1 x f x d x
A. I =-12
B. I =8
C.I =12
D. I =3/4
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1; 3] và thỏa mãn f(-1) = 4; f(3) = 7. Giá trị của I = ∫ - 1 3 5 f ' t d t bằng
A. I = 20.
B. I = 3.
C. I = 10.
D. I = 15.
Cho hàm số f liên tục trên ℝ thỏa mãn f x + f - x = 2 + 2 cos 2 x , với mọi x ϵ ℝ. Giá trị của tích phân I = ∫ - π 2 π 2 là
A. -2
B. -7
C. 7
D. 2
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số f(x) liên tục trên ℝ và ∀ x ∈ 0 ; 2018 , ta có f ( x ) > 0 và f ( x ) . f ( 2018 − x ) = 1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x là
A. 2018
B. 0
C. 1009
D. 4016
Cho hàm số y=f(x) liên tục trên ℝ và thỏa mãn f(4-x)=f(x) . Biết ∫ 1 3 x f x d x = 5 . Tính I = ∫ 1 3 f x d x
A. I = 5 2
B. I = 7 2
C. I = 9 2
D. I = 11 2
Cho hàm số f(x) và g(x) liên tục, có đạo hàm trên R và thỏa mãn f ' 0 . f ' 2 ≠ 0 và g x f ' x = x x - 2 e x . Tìm giá trị của tích phân I = ∫ 0 2 f x g ' x d x
A. -4
B. e - 2
C. 4
D. 2 - e
Cho hàm số y = f(x) liên tục trên ℝ và thỏa mãn f x + f − x = x 2 , ∀ x ∈ ℝ . Tính I = ∫ − 1 1 f x dx .
A. I = 2 3 .
B. I = 1
C. I = 2
D. I = 1 3 .
Cho f(x) và g(x) là hai hàm số liên tục trên đoạn [1;3], thỏa mãn: ∫ 1 3 [ f ( x ) + 3 g ( x ) ] d x = 10 và ∫ 1 3 [ 2 f ( x ) - g ( x ) ] d x = 6 . Tính I = ∫ 1 3 [ f ( x ) + g ( x ) ] d x
A. I=8
B. I=9
C. I=6
D. I=7