Đặt t = 2a - x. Khi đó:
∫ 0 2 a f x d x = ∫ 0 a f x d x + ∫ 0 2 a f x d x = ∫ 0 a f x d x - ∫ a 0 2 a - t d t = ∫ 0 a f x d x + ∫ a 0 f 2 a - x d x = ∫ 0 a f x + f 2 a - x d x
Đáp án C
Đặt t = 2a - x. Khi đó:
∫ 0 2 a f x d x = ∫ 0 a f x d x + ∫ 0 2 a f x d x = ∫ 0 a f x d x - ∫ a 0 2 a - t d t = ∫ 0 a f x d x + ∫ a 0 f 2 a - x d x = ∫ 0 a f x + f 2 a - x d x
Đáp án C
Cho hàm số y = f ( x ) có đạo hàm trên khoảng a ; b . Xét các mệnh đề sau:
I. Nếu hàm số y = f ( x ) đồng biến trên khoảng a ; b thì f ' x > 0 , ∀ x ∈ a ; b .
II. Nếu f ' x < 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) nghịch biến trên khoảng a ; b .
III. Nếu hàm số y = f ( x ) liên tục trên a ; b và f ' x > 0 , ∀ x ∈ a ; b thì hàm số y = f ( x ) đồng biến trên đoạn a ; b .
Số mệnh đề đúng là:
A. 3
B. 0
C. 2
D. 1
Cho hàm số f(x) liên tục trên R và f(x) ≠ 0 với mọi x ∈ R . f '(x) = (2x+1)f2(x) và f(1) = –0,5. Biết rằng tổng f(1) + f(2) + f(3) + ... + f(2017) = a b ; (a ∈ Z, b ∈ N) với a b tối giản. Mệnh đề nào dưới đây đúng?
A. a ∈ - 2017 ; 2017
B. b - a = 4035
C. a + b = - 1
D. a b < - 1
Cho hàm số f ( x ) liên tục trên ℝ và f ( x ) ≠ 0 với mọi x ∈ ℝ thỏa mãn f ' ( x ) = ( 2 x + 1 ) . f 2 ( x ) v à f ( 1 ) = - 0 , 5 . Biết tổng f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( 2017 ) = a b ; ( a ∈ ℝ ; b ∈ ℝ ) v ớ i a b tối giản. Mệnh đề nào dưới đây đúng?
A. b - a = 4035
B. a + b = - 1
C. a b < - 1
D. a ∈ - 2017 ; 2017
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số y = f(x) liên tục trên đoạn [ a;b ] và thỏa mãn điều kiện f(x) = f( a + b - x ) ∀ x ∈ a ; b . Hỏi mệnh đề nào sau đây đúng?
A. ∫ a b x f x d x = - a + b ∫ a b f x d x
B. ∫ a b x f x d x = a + b ∫ a b f x d x
C. ∫ a b x f x d x = - a + b 2 ∫ a b f x d x
D. ∫ a b x f x d x = a + b 2 ∫ a b f x d x
Cho hàm số y=f(x) liên tục trên đoạn [a;b](a<0). Mệnh đề nào sau đây đúng ?
A. ∫ a b f x d x = ∫ b a f x d x
B. ∫ a b f x d x = - ∫ b a f x d x
C. ∫ a b f x d x + ∫ b a f x d x = 2 ∫ b a f x d x
D. ∫ a b f x d x + ∫ b a f x d x = - 2 ∫ a b f x d x
Giả sử hàm số y = f(x) đồng biến trên ( 0 ; + ∞ ) ; liên tục và nhận giá trị dương trên ( 0 ; + ∞ ) và thỏa mãn f ( 3 ) = 2 3 và [ f ' ( x ) ] 2 = ( x + 1 ) . f ( x ) . Mệnh đề nào dưới đây đúng?
A . 2613 < f 2 ( 8 ) < 2614 .
B. 2614 < f 2 ( 8 ) < 2615 .
C. 2618 < f 2 ( 8 ) < 2619 .
D. 2616 < f 2 ( 8 ) < 2617 .
Cho hàm số f(x) có đạo hàm cấp hai f”(x) liên tục trên đoạn [0;1] thỏa mãn f(1) = f(0) = 1;f’(0) = 2018 Mệnh đề nào dưới đây đúng?
A. ∫ 0 1 f " x 1 - x d x = - 2018
B. ∫ 0 1 f " x 1 - x d x = - 1
C. ∫ 0 1 f " x 1 - x d x = 2018
D. ∫ 0 1 f " x 1 - x d x = 1
Cho hàm số f(x) có đạo hàm cấp hai f″(x) liên tục trên đoạn [0;1] thoả mãn f(1)=f(0)=1,f'(0)=2018. Mệnh đề nào dưới đây đúng ?
A. ∫ 0 1 f ' ' ( x ) ( 1 - x ) d x = -2018
B. ∫ 0 1 f ' ' ( x ) ( 1 - x ) d x = 1
C. ∫ 0 1 f ' ' ( x ) ( 1 - x ) d x = 2018
D. ∫ 0 1 f ' ' ( x ) ( 1 - x ) d x = -1
Cho hàm số y=f(x) liên tục trên đoạn a ; b và f(x)>0 ∀ x ∈ a ; b Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và 2 đường thẳng x=a, x=b (a<b). Thể tích của vật thể tròn xoay khi quay D quanh Ox được tính theo công thức
A. ∫ a b f ( x 2 ) d x
B. π ∫ a b f ( x 2 ) d x
C. π ∫ a b [ f ( x ) ] 2 d x
D. ∫ a b [ f ( x ) ] 2 d x