tìm giá trị lớn nhất của hàm số : \(f\left(x\right)=\frac{x^2}{x^2-2x+2016}\)
Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?
Cho pt: x²+(m-2)x-8=0 với m là tham số. Tìm tất cả các giá trị của m để pt có 2 ngiệm x1,x2 sao cho bt Q=(x1²-1)(x2²-4) có giá trị lớn nhất
Bài 1 )
Tìm giá trị lớn nhất của : \(A=\frac{2016}{x^2-2x+2017}\)
Bài 2 :
Tìm giá trị nhỏ nhất của biểu thức sau :
a ) \(\frac{20}{6x-9x^2-21}\)
b ) \(\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
cho hàm số \(y=f\left(x\right)=\frac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5}{x^2+3x-4}\)
a. tìm tập xác định của hàm số y=f(x)
b. CMR : \(y\le3\)
Cho phương trình: \(x^2-2\left(m-1\right)x+2m-5=0\)
a, Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m.
b, Nếu gọi x1, x2 là 2 nghiệm của phương trình. Tìm m để x1+x2=6. Tìm 2 nghiệm đó.
cho phương trình: x2 + (m+2)x - 8 = 0, với m la tham số
a) giải phương trình khi m=4
b) tìm tất cả các giá trị m để phương tình có 2 nghiệm x1,x2 sao cho biểu thức Q= (x12 -1)(x22 - 4) có giá trị lớn nhất
Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
tìm các giá trị x thỏa mãn:
\(\left(x-1\right)^2=2016-\left|x-1\right|\)