\(\lim\limits_{x\rightarrow0}\dfrac{e^{4-3x}-e^4}{x}=\lim\limits_{x\rightarrow0}\dfrac{e^4\left(e^{-3x}-1\right)}{x}=\lim\limits_{x\rightarrow0}-3e^4\left(\dfrac{e^{-3x}-1}{-3x}\right)=-3e^4\)
Hàm liên tục tại \(x=0\) khi \(3ae^4=-3e^4\Rightarrow a=-1\)