Cho hàm số f(x) xác định trên R\{±1} thỏa mãn f '(x) = 1 x 2 - 1 . Biết f(–3) +f(3) = 0 và f - 1 2 + f 1 2 = 2. Giá trị T = f(–2) + f(0) + f(4) bằng:
A. T = 1 2 ln 9 5
B. T = 2 + 1 2 ln 9 5
C. T = 3 + 1 2 ln 9 5
D. T = 1 + 1 2 ln 9 5
Cho hàm số f(x) xác định trên R\{-1;1/2} và thỏa mãn f ' x = 4 x + 1 2 x 2 + x - 1 ; f 1 + f - 2 = 0 và f(0) + 2f(1)=0. Giá trị của biểu thức f(-3) + f(-3) + f(-1/2) bằng:
A. ln14+ln20-3/2ln10
B. -ln10
C.ln70
D. ln28
Cho hàm số f x = a x + b c x + d với a , b , c , d ∈ R có đồ thị hàm số y=f'(x) như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số y=f(x) trên đoạn [-3;-2] bằng 8. Giá trị của f(2) bằng.
A. 2
B. 5
C. 4
D. 6
Cho hàm số f(x) xác định trên R\{-1;2} thỏa mãn f ' ( x ) = 3 x 2 - x - 2 , f(-2)=2 ln2+2 và f(0)=ln2-1. Giá trị của biểu thức f(-3)+f( 1 2 ) bằng
A. 2+ln5.
B. 2+ln 5 2 .
C. 2-ln2.
D. 1+ln 5 2 .
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a,b,cÎR, a≠0) có đồ thị (C). Biết đồ thị (C) đi qua A(1;4) và đồ thị hàm số y = f ’ ( x ) cho bởi hình vẽ. Giá trị f ( 3 ) - 2 f ( 1 ) là
A. 30
B. 24
C. 26
D. 27
Cho hàm số f ( x ) = a x 4 + b x 2 + c có m i n ( - ∞ ; 0 ) f ( x ) = f ( - 1 ) . Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [ 1 2 ;2] bằng
A. c + 8a
B. c - 7 16 a
C. c + 9 16 a
D. c - a
Cho hàm số f(x) xác định trên R \ - 2 ; 1 thỏa mãn f ' x = 1 x 2 + x - 2 , f - 3 - f 3 = 0 và f 0 = 1 3 . Giá trị biểu thức f - 4 + f - 1 - f 4 bằng
A. 1 3 ln 2 + 1 3
B. ln 80 + 1
C. 1 3 ln 4 5 + ln 2 + 1
D. 1 3 ln 8 5 + 1
Cho hàm số y=f(x) xác định trên R \ 1 2 thỏa mãn f ' ( x ) = 2 2 x - 1 , f ( 0 ) = 1 . Giá trị của biểu thức f ( - 1 ) + f ( 3 ) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Cho hàm số f(x) thỏa mãn f ' ( x ) 2 + f ( x ) . f ' ' ( x ) = 15 x 4 + 12 x , ∀ x ∈ R và f(0)=f '(0)=1. Giá trị của f 2 ( 1 ) bằng
A. 9 2
B. 5 2
C. 10
D. 8.
Cho hàm số f(x) thỏa mãn ( f ' ( x ) ) 2 + f ( x ) . f ' ' ( x ) = 15 x 4 + 12 x , ∀ x ∈ R và f ( 0 ) = f ' ( 0 ) = 1 Giá trị của f 2 ( 1 ) bằng
A. 8
B. 9/2
C. 10
D. 5/2