Cho hàm số y=f(x) thoả mãn f(-2)=3, f(2)=2 và bảng xét dấu của đạo hàm như sau:
Bất phương trình 3 f ( x ) + m ≤ 4 f ( x ) + 1 + 4 m nghiệm đúng với mọi số thực x ∈ - 2 ; 2 khi và chỉ khi
A. m ∈ - 2 ; - 1
B. m ∈ - 2 ; - 1
C. m ∈ - 2 ; 3
D. m ∈ - 2 ; 3
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
cho phương trình $x^4+(1-2m)x^2+m^2-1$
tìm m để phương trình
a)vô nghiệm
b)có 1 nghiệm
c)có 2 nghiệm
d)có 3 nghiệm
f)có 4 nghiệm
giúp mình giải chi tiết 1 chút nhé và giúp mình luôn trong cách trình bày
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ, biết f(-1)=f(2) và f(0)=f(3)
Phương trình f(2sinx+1)=f(m) có đúng ba nghiệm thuộc đoạn - π 2 ; π 2 khi và chỉ khi
A. m ∈ 0 ; 2
B. m ∈ 1 ; 3 \ 0 ; 2
C. m ∈ f ( 2 ) ; f ( 0 )
D. m ∈ - 1 ; 3
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị như hình bên. Tất cả các giá trị của m để phương trình | f ( x ) | + m - 1 = 0 có 3 nghiệm phân biệt là
A. m=1
B. m=2
C. m = ± 1
D. m=0
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )