Đáp án A
Hàm số có tập xác định D = − ∞ ; 0 ∪ 5 ; + ∞
Ta có f ' x = 2 x − 5 x 2 − 5 ⇒ f ' x = 0 ⇔ 2 x − 5 = 0 ⇔ x = 5 2 ∉ D ⇒ S = ∅
Đáp án A
Hàm số có tập xác định D = − ∞ ; 0 ∪ 5 ; + ∞
Ta có f ' x = 2 x − 5 x 2 − 5 ⇒ f ' x = 0 ⇔ 2 x − 5 = 0 ⇔ x = 5 2 ∉ D ⇒ S = ∅
Cho hàm số f ( x ) = l n ( x 2 - 3 x ) . Tập nghiệm S của phương trình f'(x) = 0 là:
A. S = ∅
B. S = 3 2
C. S = {0;3}
D. S = - ∞ ; 0 ∪ 3 ; + ∞
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F ( 0 ) = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + l n ( e x + 1 ) = 3
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Kí hiệu F (x) là một nguyên hàm của hàm số f ( x ) = 1 e x + 1 , biết F 0 = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + ln ( e x + 1 ) = 3 .
A. S = - 3 ; 3
B. S = 3
C. S = ∅
D. S = - 3
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Gọi S là tập hợp tất cả các số nguyên m để phương trình f(sinx)=3sinx+m có nghiệm thuộc khoảng 0 ; π Tổng các phần tử của S bằng
A. -5
B. -8
C. -6
D. -10
Tìm tập nghiệm S của phương trình 5 2 x 2 - x = 5
A. S = 0 ; 1 2
B. 0 ; 2
C. 1 ; 1 2 .
D. S = ∅
Gọi S là tập nghiệm của bất phương trình 2 x 3 + x ≤ x + 2 2 x + 5 . Biết S = a ; b , a , b ∈ ℝ . Giá trị M = a 2 b 3 của gần nhất với số nào sau đây:
A. 0,12
B. 2,42
C. 2,12
D. 1,12
Cho hàm số f ( x ) = a ( x + 1 ) 3 + b x e x , biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 .
Tính S=a+b
A. S=10
B. S=11
C. S=6
D. S=17
Cho hàm số f(x) xác định trên R thỏa mãn f' (x)= e x + e - x - 2 , f(0)=5 và f ln 1 4 = 0 .Giá trị của biểu thức S = f - ln 6 + f ln 4 bằng:
A. S= 31/2.
B. S= 9/2.
C. S= 5/2.
D. S= -7/2
Tính tổng S các nghiệm của phương trình (2 cos2 x+5) ( s i n 4 x - c o s 4 x ) +3=0 trong khoảng ( 0 ; 2 π )
A. S=11 π /6
B. S=4 π
C. S=5 π
D. S=7 π /6
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.