Cho hàm số y = f (x) có đạo hàm liên tục trên ℝ , với f (x) > 0 và f (0) = 1. Biết rằng f ' ( x ) + 3 x x - 2 f ( x ) = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4
B. - e 6 < m < - 1
C. - e 4 < m < - 1
D. 0 < m < e 4
Tìm tất cả các giá trị thực của tham số m để hàm số f ( x ) = sin x - m sin 2 x - 1 3 sin 3 x + 2 m x có f ' ( x ) ≥ 0 với mọi x ∈ ℝ .
A. m ∈ [ 1 ; + ∞ )
B. m ∈ - 1 ; 1
C. m ∈ ( - ∞ ; - 1 ]
D. m ∈ 1 ; 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ ℝ . Biết f 0 = 1 và 2 - x f x - f ' x = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình f x = m có hai nghiệm thực phân biệt.
A. m < e 2
B. 0 < m < e 2
C. 0 < m ≤ e 2
D. m > e 2
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tìm tất cả các giá trị thực của tham số m để hàm số y=f(|x|) có 5 cực trị
A. - 10 < m < 5 4
B. - 2 < m < 5
C. - 2 < m < 5 4
D. 5 4 < m < 2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Tìm tất cả các giá trị của m để hàm số f ( x ) = 1 - x - 1 + x x k h i x < 0 m + 1 - x 1 + x k h i x ≥ 0 liên tục tại x = 0
A. m = 1
B. m = -2
C. m = -1
D. m = 0
Cho hàm số f(x) thỏa mãn f x + f ' x = e - x , ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f x e 2 x là
A. x - 2 e x + e x + C
B. x + 2 e x + e x + C
C. x - 1 e x + C
D. x + 1 e x + C
Cho hàm số f ( x ) = 3 x + a - 1 k h i x ≤ 0 1 + 2 x - 1 x k h i x > 0 . Tìm tất cả giá trị của a để hàm số đã cho liên tục tại điểm x = 0
A. a = 1.
B. a = 3.
C. a = 2.
D. a = 4.