Hàm số f ( x ) = x + 3 - a x - b ( x - 1 ) 2 c x > 1 c x ≤ 1 . Để hàm số f(x) liên tục trên R thì giá trị của tổng 2a+b+16c tương ứng bằng
A. 1
B. 0
C. 3
D. 2
Cho hàm số f ( x ) = 3 x − 5 , x ≤ − 2 a x − 1 , x > − 2 . Với giá trị nào của a thì hàm số f(x) liên tục tại x=-2?
A. a = -5
B. a = 0
C. a = 5
D. a = 6
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số: x 2 − m x − 6 m 2 x − 3 khi x ≠ 3 2 m + 3 khi x = 3 với m là tham số thực. Tổng các giá trị của m để hàm số liên tục tại x = 3 là:
A. 3 2
B. 1 2
C. - 1 2
D. 1
Cho hàm số y=f(x) có đạo hàm cấp hai liên tục trên ℝ . Biết f ' − 2 = − 8 , f ' 1 = 4 và đồ thị của hàm số f"(x) như hình vẽ dưới đây. Hàm số y = 2 f x − 3 + 16 x + 1 đạt giá trị lớn nhất tại x 0 thuộc khoảng nào sau đây?
A. 0 ; 4
B. 4 ; + ∞
C. − ∞ ; 1
D. − 2 ; 1
Với giá trị thực nào của tham số c thì hàm số f x = − cx + 1 , khi x < 2 3 , khi x = 2 c 2 x 2 + 2 , khi x > 2 liên tục trái tại 2.
A. − 1 2 3 2 , 1 2 3 2
B. 1 2
C. -1
D. 0
Cho hàm số f(x) liên tục và có đạo hàm trên R \ 1 3 thỏa mãn các điều kiện sau: f ( x ) ( 3 x + 2 ) + f ' ( x ) ( 3 x - 1 ) = x 2 + 1 ; f ( 0 ) = - 3 Khi đó giá trị của ∫ 1 2 f ( x ) d x nằm trong khoảng nào dưới đây?
A. (0;1)
B. (1;2)
C. (3;4)
D. (2;3)
Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0)=3,f(2)=12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 . Tính f(1).
A. 27 4
B. 25 4
C. 9 2
D. 15 4
Cho hàm số f x = a x + b c x + d với a , b , c , d ∈ R có đồ thị hàm số y=f'(x) như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số y=f(x) trên đoạn [-3;-2] bằng 8. Giá trị của f(2) bằng.
A. 2
B. 5
C. 4
D. 6