Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d thỏa mãn a,b,c,dÎR; a > 0 và d > 2019 8 a + 4 b + 2 x + d - 2019 < 0 . Số cực trị của hàm số y = | f ( x ) - 2019 | bằng
A. 3
B. 2
C. 1
D. 5
Cho hàm số f(x) = x10 + (m-2)x4 + (m2 – 9)x2 +2019. Số giá trị nguyên của tham số m để hàm số đã cho đạt cực đại tại x0=0 là
A. 6
B. 5
C. 4
D. Vô số
Cho hàm số y=f(x) liên tục và có đạo hàm trên R. Biết hàm số f’(x) có đồ thị được cho trong hình vẽ. Tìm điều kiện của m để hàm số g(x)=f(2019)x – mx +2 đồng biến trên [0;1]
Cho hàm số f (x) có đạo hàm xác định trên ℝ và thỏa mãn f ' x + 4 x − 6 x . e x 2 − f x − 2019 = 0 và f(0)= -2019. Số nghiệm nguyên dương của bất phương trình f(x)< 7 là
A. 91
B. 46
C. 45
D. 44
Cho hàm số y = f(x) xác định trên R và có đồ thị như hình vẽ. Tìm tất cả các giá trị thực của tham số m để phương trình f ( x ) + m - 2019 = 0 có ba nghiệm phân biệt.
A.m < 2016, m > 2020
B. 2016 < m < 2020
C. m ≤ 2016 , m ≥ 2020
D. m = 2016, m = 2020
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên không âm của tham số m để hàm số y=|f(x-2019)+m-2| có 5 điểm cực trị. Số các phần tử của S bằng
A. 3
B. 4
C. 2
D. 5
Cho hàm số f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình f 2 cos x + m - 2018 f cos x + m - 2019 = 0 có đúng 6 nghiệm phân biệt thuộc đoạn 0 ; 2 π là
A. 1
B. 2
C. 3
D. 5
Cho hai hàm số: f ( x ) = 1 3 x 3 - m + 1 x 2 + m 2 + 2 m + 5 x - 2019 và g ( x ) = ( m 2 + 2 m + 3 ) x 3 - ( 3 m 2 + 6 m + 8 ) x 2 - 4 x + 3 với m là tham số.
Phương trình g(f(x)) = 0 có bao nhiêu nghiệm?
A. 9
B. 6
C. 3
D. 1
Cho hàm số f(x) thỏa mãn f’(x) =-cosx và f(0)=2019. Mệnh đề nào dưới đây đúng
A. f(x)=-sinx+2019
B. f(x)=2019+cosx
C. f(x)=sinx+2019
D. f(x)=2019-cosx