Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số y=f(x)có đạo hàm trên đoạn [a,b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn[a,b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Cho hàm số f ( x ) = x 3 - ( m - 1 ) x 2 + ( 5 - m ) x + m 2 - 5 . Có bao nhiêu giá trị nguyên của tham số m để hàm số g(x)=f(|x|) có 5 điểm cực trị?
A. 0.
B. 1
C. 2.
D. 3.
Cho hàm số y = 1 3 x 3 - 1 2 2 m + 4 x 2 + m 2 + 4 m + 3 x + 1 (m là tham số). Tìm m để hàm số đạt cực đại tại x 0 = 2
A. m = 1
B. m = -2
C. m = -1
D. m = 2
Cho hàm số f(x)=x3-(m-1)x2+(5-m)x+m2-5. Có bao nhiêu giá trị nguyên của tham số m để hàm số g ( x ) = f x có 5 điểm cực trị?
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất
A. m = 0
B. m = - 1 2
C. m = 1
D. m = 1 2
Tìm các giá trị của tham số m để hàm số y = x 4 - 2 m x 2 + m 2 - 1 đạt cực tiểu tại x 1 , x 2 thỏa mãn x 1 . x 2
A. m=-4
B. m=-3
C. m>4
D. m=4
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
A. m = 1 2
B. m = 0
C. m = 1
D. m = - 1 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 4 − 2 m + 1 x 2 + m 2 − 1 đạt cực tiểu tại x = 0.
A. m<-1
B. m=-1
C. m ≤ − 1.
D. m ≤ − 1 m ≥ 1