Cho hàm số y = f (x) liên tục trên R có đồ thị như hình vẽ.
Biết trên ( - ∞ ; - 3 ) ∪ ( 2 ; + ∞ ) t h ì f ' ( x ) > 0 . Số nghiệm nguyên thuộc (-10; 10) của bất phương trình [ f ( x ) + x - 1 ] ( x 2 - x - 6 ) > 0 là
A. 9
B. 10
C. 8
D. 7
Cho hàm số y = f (x) có bảng biến thiên như sau
Số nghiệm thực của phương trình 2 f (x) + 3 = 0 là
A. 4
B. 3
C. 2
D. 1
Cho hàm số f ( x ) = ax + 3 b x 2 + c x + d ( a , b , c , d ∈ R ) có đồ thị như hình vẽ sau. Số nghiệm của phương trình 4f(x) + 3 = 0 là
A. 3
B. 2
C. 1
D. 0
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 6 = 0 là
A. 3
B. 2
C. 1
D. 0
Cho hàm số f ( x ) = l n ( x 2 - 2 x + 3 ) . Tập nghiệm của bất phương trình f'(x)>0 là
A. ( 2 ; + ∞ ) .
B. ( - 1 ; + ∞ ) .
C. ( - 2 ; + ∞ ) .
D. ( 1 ; + ∞ ) .
Cho hàm số f ( x ) = x 3 – ( 2 m - 1 ) x 2 - 3 ( m 2 + 1 ) x + 2 m - 3 . Tích hai nghiệm của phương trình f ’ ( x ) = 0 là
A. - 3 ( m 2 + 1 )
B. 3 ( m 2 + 1 )
C. - ( m 2 + 1 )
D. m 2 + 1
Cho hàm số y = f ( x ) có bảng biến thiên như sau:
Số nghiệm của phương trình f ( x ) - 3 = 0 là
A. 3
B. 0
C. 2
D. 1
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F ( 0 ) = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + l n ( e x + 1 ) = 3
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên và f(-2) = 3. Tập nghiệm của bất phương trình f(x) > 3 là
A. S = - 2 ; 2
B. S = - ∞ ; - 2
C. S = - ∞ ; - 2 ∪ 2 ; + ∞
D. S = - 2 ; + ∞