x2 + y2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\) = \(\sqrt{5}-2+3-\sqrt{5}=1\)
Ta có
P = xy \(\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
x2 + y2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\) = \(\sqrt{5}-2+3-\sqrt{5}=1\)
Ta có
P = xy \(\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
Cho ba số thực dương x, y, z thỏa mãn: \(x+2y+3z=2\). Tìm GTLN của biểu thức: \(S=\sqrt{\dfrac{xy}{xy+3z}+}\sqrt{\dfrac{3yz}{3yz+x}+}\sqrt{\dfrac{3xz}{3xz+4y}}\)
Cho hai số thực x,y thỏa mãn \(x-\sqrt{x+6}=\sqrt{y+6}-y\). Tìm GTLN,GTNN của biểu thức P=X+Y
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=5
Tìm gtnn của \(P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
a) tìm GTNN, GTLN của A =\(\sqrt{x-1}\)+\(\sqrt{5-x}\)
b) cho các số x,y thỏa mãn x+y>= 3
Cm : x+y +1/2x+2/y>= 9/2
Cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm GTLN của biểu thức: \(M=xy+3y-4x^2-3\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=1.Tìm GTLN của biểu thức
\(Q=\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+xz}}+\frac{z}{z+\sqrt{z+xy}}\)
Tìm GTLN của biểu thức P=xy+2yz=xz trong đó x,y,z là các số thực thỏa mãn \(x\ge y\ge z>0\)và \(1+4\sqrt{2}-2\sqrt{2}x^2=z^2=5-4y^2\)