\(x+y+2xy=\dfrac{15}{2}\)\(\Rightarrow\dfrac{15}{2}\le\left(x+y\right)+\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)-15\ge0\)
\(\Leftrightarrow\left(x+y+5\right)\left(x+y-3\right)\ge0\)
\(\Leftrightarrow x+y\ge3\) (vì \(x+y+5>0\) với mọi x,y dương)
\(\Rightarrow P_{min}=3\)
Dấu = xảy ra <=> \(x=y=\dfrac{3}{2}\)