Đồ thị hai hàm số không cắt nhau khi và chỉ khi phương trình
m + 1 x 2 + 3 m 2 x + m = m + 1 x 2 + 12 x + 2 vô nghiệm
⇔ 3 m 2 - 4 x = 2 - m vô nghiệm
⇔ m 2 − 4 = 0 2 − m ≠ 0 ⇔ m = ± 2 m ≠ 2 ⇔ m = − 2
Đáp án cần chọn là: B
Đồ thị hai hàm số không cắt nhau khi và chỉ khi phương trình
m + 1 x 2 + 3 m 2 x + m = m + 1 x 2 + 12 x + 2 vô nghiệm
⇔ 3 m 2 - 4 x = 2 - m vô nghiệm
⇔ m 2 − 4 = 0 2 − m ≠ 0 ⇔ m = ± 2 m ≠ 2 ⇔ m = − 2
Đáp án cần chọn là: B
Tìm tất cả các giá trị tham số m để hai đồ thị hàm số \(y=-x^2-2x+3\) và \(y=x^2-m\) có điểm chung
Cho hàm số y=\(x^2-2\left(m+1\right)x+2m+1\) (1)
Tìm giá trị của tham số m để đồ thị hàm số (1) cắt trục Ox tại hai điểm phân biệt A,B và cắt trục Oy tại C sao cho tam giác ABC có diện tích bằng 3
1) Cho hàm số: \(y=x^2-3x+4\) có đồ thị là P và đường thẳng d có phương trình:
\(y=2x-m\), và m là tham số. Tìm các giá trị của m để d cắt P tại hai điểm phân biệt \(A,B\) sao cho: \(OA^2+OB^2=57\) và khi đó O là toa độ góc
2) Cho hàm số \(f\left(x\right)=\sqrt{3-x}-\sqrt{3+x}-x^3-x\). Tìm tất cả giá trị của tham số a để tập nghiệm của bất phương trình \(f\left(2x-1\right)>f\left(-2a\right)\) có ít nhất là 3 số nguyên
cho hàm số y=\(\sqrt{2x^2-2x-m}-x-1\)
có đồ thị (C)
tìm tất cả các giá trị nguyên dương của m để đồ thị (C) cắt trục hoành tại 2 điểm phân biệt
cho hàm số y=x^2-3(m+1)x+m^2+3m-2, m là tham số . Tìm tất cả giá trị của m để giá trị nhỏ nhất của hàm số là lớn nhất
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Cho hàm số y=(3m-1)x-15m+2 (biến x, m là tham số) có đồ thị là d. Tìm m để khoảng cách từ M(1;-2) đến d đạt giá trị lớn nhất.
Tìm tất cả các giá trị thực của tham số m để hàm số y = − x 2 + (m−1)x + 2 nghịch biến trên khoảng (1; 2).
A. m < 5
B. m > 5
C. m < 3
D. m > 3
Cho hàm số y = 2(m−1)x – m 2 – 3 (d). Tìm tất cả các giá trị của m để (d) cắt trục hoành tại một điểm có hoành độ x 0 thỏa mãn x 0 < 2.
A. m < -1
B. m > 2
C. m > 1
D. m < 1