Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hai đường tron (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (O), (O') cắt nhau tại P (A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)), Biết PA = AB = 4cm. Tính diện tích hình tròn (O') ?

Thien Tu Borum
25 tháng 4 2017 lúc 15:44

Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').

Hướng dẫn làm bài:

Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB

Xét hai tam giác vuông OPB và O’AP, ta có:

ˆA=ˆB=900A^=B^=900

ˆP1P1^ chung

Vậy ΔOBP ~ ∆ O’AP

⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r

Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)

Áp dụng định lí Py-ta-go trong tam giác vuông O’AP

O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2

Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)

Khùng Điên
25 tháng 4 2017 lúc 16:56

Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB

Xét hai tam giác vuông OPB và O’AP, ta có:

A^=B^=900

P1^ chung

Vậy ΔOBP ~ ∆ O’AP

⇒rR=PO′PO=PAPB=48=12⇒R=2r

Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)

Áp dụng định lí Py-ta-go trong tam giác vuông O’AP

O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2

Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)


Các câu hỏi tương tự
Nguyễn Ánh Sáng
Xem chi tiết
Huỳnh Thanh Trúc
Xem chi tiết
minh minh
Xem chi tiết
minh minh
Xem chi tiết
Nhat Minh
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Yến Vy Nguyễn
Xem chi tiết
Xuân Trà
Xem chi tiết
Văn Tường
Xem chi tiết