a: Gọi D là giao của AC và HH'
=>HD=H'D
=>ΔAHH' cân tại A
=>góc AHH'=góc AHD=góc ACB
=>AH'CB là tứ giác nội tiếp
a: Gọi D là giao của AC và HH'
=>HD=H'D
=>ΔAHH' cân tại A
=>góc AHH'=góc AHD=góc ACB
=>AH'CB là tứ giác nội tiếp
Cho tam giác nhọn ABC, trực tâm H, nội tiếp đường tròn (O). Gọi H' là điểm đối xứng của H qua BC. Chứng minh:
a) Tứ giác ABH'C là tứ giác nội tiếp
b) Bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác ABC
c) OA \(\perp\) B'C'
cho tam giác ABC nhọn, H là trực tâm nội tiếp đường tròn tâm O. Gọi H' là điểm đối xứng của H qua BC. Chứng minh
a) Tứ giác ABH'C nội tiếp
b) Bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác ABC
MÌNH ĐANG CẦN GẤP XIN HÃY GIẢI GIÚP MÌNH SỚM NHÉ
Cho tam giác nhọn ABC,trực tâm H,nội tiếp đường tròn (o).Gọi H là trực đối xứng với A qua BC,Cm :a,Tứ giác ABHC nội tiếp ,b,Bán kính đường tròn ngoại tiếp tam giác BHC,bằng bán kính đường tròn ngoại tiếp ABC
Cho tam giác ABC nhọn, có H là trực tâm, nội tiếp đường tròn tâm O đường kính AM = 2R
a, Chứng minh tứ giác BHCM là hình bình hành
b, Gọi N là điểm đối xứng của M qua AB. Chứng minh tứ giác AHBN nội tiếp được trong một đường tròn
c, Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N, H, E thẳng hàng
d, Giả sử AB = R 3 . Tính diện tích phần chung của đường tròn (O) và đường tròn ngoại tiếp tứ giác AHBN
cho tam giác ABC có 3 góc nhọn nội tiếp .đường tròn tâm <o>kẻ các đường cao BD,CE cắt nhau tại H
a/chứng minh BCDE và ADHE là tứ giác nội tiếp
b/chứng minhAD.AC=AE.AB
c/kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC.chứng minh rằng Ax // ED
d/gọi F la điểm đối xứng với H qua BC .chứng minh rằng F nằm trên đường tròn tâm O
Cho tam giác ABC có 3 góc đều nhọn. Gọi O là tâm đường tròn ngoại tiếp, H là trực tâm, P là trung điểm cạnh AC của tam giác ABC.
a. Chứng minh BH= 2OP
b. Gọi L là trung điểm của BH, chứng minh LP bằng bán kính đường tròn ngoại tiếp tam giác ABC
Giúp với !! Hứa sẽ tick
Cho tam giác ABC có hai đường cao BE, CF cắt nhau tại H. Gọi E' là điểm đối xứng H qua AC, F' là điểm đối xứng H qua AB. Chứng minh:
a, Tứ giác BCE'F' nội tiếp đường tròn (O)
b, Năm điểm A, F', B, C, E' cùng thuộc một đường tròn
c, AO và EF vuông góc nhau
d, Khi A chạy trên (O) thì bán kính đường tròn ngoại tiếp tam giác AEF không đổi
Cho tam giác nhọn ABC nội tiếp (O) có trực tâm H. Đường tròn ngoại tiếp tam giác BHC cắt phân giác ^BAC tại điểm thứ hai M. Gọi P là trục tâm tam giác BCM.
a) Chứng minh: P nằm trên (O) ?
b) Đường thẳng qua H song song với AO cắt BC tại E. F là điểm trên cạnh BC sao cho CF=BE. CMR: A,F,O thẳng hàng ?
c) N là tâm đường tròn ngoại tiếp tam giác ABM. Chứng minh PN=PO ?