Cho tam giác nhọn ABC, trực tâm H, nội tiếp đường tròn (O). Gọi H' là điểm đối xứng của H qua BC. Chứng minh:
a) Tứ giác ABH'C là tứ giác nội tiếp
b) Bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác ABC
c) OA \(\perp\) B'C'
cho tam giác ABC nhọn, H là trực tâm nội tiếp đường tròn tâm O. Gọi H' là điểm đối xứng của H qua BC. Chứng minh
a) Tứ giác ABH'C nội tiếp
b) Bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác ABC
MÌNH ĐANG CẦN GẤP XIN HÃY GIẢI GIÚP MÌNH SỚM NHÉ
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn O bán kính R.Vẽ hai đường kính AD và BE cả đường tròn , gọi h là trực tâm của tam giác ABC, . Tính diệntích hình tròn ngoại tiếp tam giác BHC theo R
giúp tớ với
cho tam giác ABC nhọn trực tâm H nội tp đg tròn (O) Gọi H' là điểm đối xứng của H qua BC CM
a, tg ABH'C là tg nội tiêp
b.bán kính đg tròn ngoại tiếp tam giác BHC = bk đg tròn ngoạn tp tam giác ABC
giúp tớ với tớ đang cần gấp
Cho H là trực tâm của tam giác ABC.
a) Gọi H' là điểm đối xứng của h qua AC. Chứng minh rằng H' nằm trên đường tròn ngoại tiếp tam giác ABC.
b) Chứng minh các đường tròn ngoại tiếp các tam giác AHB, BHC, CHA có bán kính bằng nhau.
Cho tam giác ABC nhọn, có H là trực tâm, nội tiếp đường tròn tâm O đường kính AM = 2R
a, Chứng minh tứ giác BHCM là hình bình hành
b, Gọi N là điểm đối xứng của M qua AB. Chứng minh tứ giác AHBN nội tiếp được trong một đường tròn
c, Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N, H, E thẳng hàng
d, Giả sử AB = R 3 . Tính diện tích phần chung của đường tròn (O) và đường tròn ngoại tiếp tứ giác AHBN
Cho tam giác ABC nội tiếp đường O bán kính R. H là trực tâm của tam giác ABC. Gọi AD la đường kính của đường tròn O
A. CMR : BH = DC
B. CMR : H,G,O thẳng hàng.trong đó G là trong tâm tam giác ABC
C. AH căt (O;R) tại H'. Tinh bán kính đường tròn ngoại tiếp tam giác BH'C
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O .Kẻ 2 đg kính AA' và BB' của đường tròn
a,Chứng minh ABA'B' là hình chữ nhật
b, Gọi H là trực tâm của tam giác ABC. Chứng minh BH=CA'
c, cho AO=R tìm bán kính đg tròn ngoại tiếp tam giác BHC
vẽ hình cx đc, ko thì thoi
cho tam giác ABC có AB=AC=40, BC=48. gọi O và I thứ tự là tâm đường tròn ngoại tiếp tam và nội tiếp tam giác. tính
a) Bán kính đường tròn nội tiếp
b) Bán kính đường tròn ngoại tiếp
c) Khoảng cách OI