Cho biết \(cosx=-\dfrac{1}{2}\)
\(sin^2x+cos^2x=1\Rightarrow sin^2x=1-cos^2x\)
\(\Rightarrow sin^2x=1-\dfrac{1}{4}=\dfrac{3}{4}\)
\(S=4sin^2x+8tan^2x\)
\(\Rightarrow S=4\left(sin^2x+2\dfrac{sin^2x}{cos^2x}\right)\)
\(\Rightarrow S=4\left(\dfrac{3}{4}+2\dfrac{\dfrac{3}{4}}{\dfrac{1}{4}}\right)\)
\(\Rightarrow S=4\left(\dfrac{3}{4}+6\right)\)
\(\Rightarrow S=4.\dfrac{27}{4}=27\)