1/ tìm tham số thực m để tồn tại x thỏa mãn f(x) = m^2x + 3 - ( mx + 4 ) âm. 2/ tìm tất cả các giá trị của m để f (x) = m( x-m ) - ( x - 1 ) không âm với mọi x thuộc ( - vô cực , m+1)
3: cho hàm số f(x)=ax^2+bx+c có tọa độ đỉnh (2;-1) và có giá trị nhỏ nhất khi là -1 khi x=2
Tìm tất cả các giá trị thực của tham số m để phương trình |f(2017x-2018)-2|=m có đúng 3 nghiệm.
Cho biểu thức f(x) = (x + 5)(3 - x). Tập hợp tất cả các giá trị của x thỏa mãn bất phương trình f(x) ≤ 0 là
A. x ∈ (- ∞ ;5) ∪ (3;+ ∞ )
B. x ∈ (3;+ ∞ )
C. x ∈ (-5;3)
D. x ∈ (- ∞ ;-5] ∪ [3;+ ∞ )
\(y=f\left(x\right)=4x^2-4mx+m^2-2m\)Cho hàm số
Tìm tất cả giá trị của tham số m để giá trị nhỏ nhất của hàm số trên [-2;0] bằng 3
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f ( x ) = 4 x 2 − 4 mx + m 2 − 2 m trên đoạn [-2;0] bằng 3. Tính tổng T các phần tử của S
A. T = - 3 2
B. T = 1 2
C. T = 9 2
D. T = 3 2
cho f(x)=-x^2-2x+m. Tất cả các giá trị của tham số m để f(x) nhỏ hơn hoặc bằng 0 với mọi x thuộc R
Tìm tất cả các giá trị thực của tham số m để f(x) = m(x - m) - (x - 1) không âm với mọi x ∈ (- ∞ ; m + 1].
A. m = 1
B. m > 1
C. m < 1
D. m ≥ 1
Tìm các giá trị thực của tham số m để f(x) = -x² -2(m-2)x +m+3 luôn âm với mọi x thuộc R
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = (m2 – 3)x + 2m – 3 song song với đường thẳng y = x + 1.
A. m = 2.
B.
C. m = - 2
D. m = 1.